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A Transition-Aware Method for the Simulation of Compliant
Contact with Regularized Friction
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Abstract—Multibody simulation with frictional contact has
been a challenging subject of research for the past thirty years.
Rigid-body assumptions are commonly used to approximate
the physics of contact, and together with Coulomb friction,
lead to challenging-to-solve nonlinear complementarity problems
(NCP). On the other hand, robot grippers often introduce
significant compliance. Compliant contact, combined with reg-
ularized friction, can be modeled entirely with ODEs, avoiding
NCP solves. Unfortunately, regularized friction introduces high-
frequency stiff dynamics and even implicit methods struggle with
these systems, especially during slip-stick transitions. To improve
the performance of implicit integration for these systems we
introduce a Transition-Aware Line Search (TALS), which greatly
improves the convergence of the Newton-Raphson iterations
performed by implicit integrators. We find that TALS works
best with semi-implicit integration, but that the explicit treatment
of normal compliance can be problematic. To address this, we
develop a Transition-Aware Modified Semi-Implicit (TAMSI)
integrator that has similar computational cost to semi-implicit
methods but implicitly couples compliant contact forces, leading
to a more robust method. We evaluate the robustness, accuracy
and performance of TAMSI and demonstrate our approach
alongside relevant sim-to-real manipulation tasks.

Index Terms—contact modeling, simulation and animation,
grasping, robotics manipulation, dynamics.

I. INTRODUCTION

RECENTLY robotics has experienced a dramatic boom
due to the introduction of new sensor technologies, ac-

tuation, and innovative software algorithms that allow robots to
reason about the world around them. These new technologies
are allowing the next generation of robots to start moving from
their highly structured environments in factories and research
labs to less structured, richer environments such as those
found in the home. There are still, however, a large variety of
research problems to be solved. In particular, manipulation is
one area of robotics that raises significant challenges including
high-speed sensing, planning, and control.
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Fig. 1: Sim-to-real comparison for the task of reorienting
a mug by making contact with an external surface. See
supplemental video.

Simulation has proven indispensable in this new era of
robotics, aiding at multiple stages during the mechanical and
control design, testing, and training of robotic systems. For
instance, [1] demonstrates the use of simulated data to train a
robotic system to grasp new objects, while [2] studies how to
transfer policies trained in simulation to the real world.

Near real-time forward simulation has found applications in
contact-aware state estimation wherein predicted contacts and
physical consistency [3] are used to estimate the state of a
robot, manipulands, or both [4], [5].

We would like to synthesize, train, and validate controllers
in simulation with the expectation that they will work well
in reality. Hence simulation should present a controller with
a range of physical models and disturbances, but must avoid
significant non-physical simulation artifacts that have no real-
world counterparts. A central challenge in simulation for
manipulation is the physical modeling and numerical solution
of multibody dynamics with contact and friction. Such simu-
lations often involve high mass ratios, stiff dynamics, complex
geometries, and friction. Artifacts that are unimportant for
other applications are highly amplified in the simulation of
a manipulation task; simulations either become unstable or
predict highly unstable grasps even if stable in the real system.
These characteristics impose strict requirements on robustness,
accuracy, and performance to the simulation engine when
compared to other robotic scenarios with contact, such as
walking.

A popular approximation to the true compliant physics
of contact is the mathematical limit in which bodies are
rigid; however, it can lead to indeterminate systems with
multiple solutions, or no solution [6]. Still, the rigid-body
approximation is at the core of many simulation engines,
enabling them to run at interactive rates.

Generally, rigid-body assumptions and Coulomb friction
lead to a complex formulation in terms of a nonlinear com-
plementarity problem (NCP), which can be simplified to a
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linear complementarity problem (LCP) using a polygonization
of the friction cone [7], [8]. LCPs are often solved using direct
pivoting methods such as Lemke’s algorithm. Even though
there are theoretical results for the solution of LCPs [9], the
class of systems for which they apply are seldom found in
practice, and robust LCP implementations are either slow or
proprietary. The authors of [10] iteratively solve a quadratic
program (QP) for the friction impulses and a second QP
for the normal impulses. Although the results are promising,
the coupled problem is non-convex and the solution is not
guaranteed to exist.

Another drawback of LCP formulations is that the lin-
earization of the friction cone might lead to preferential
directions and cause bias in the solution [11]—an example
of a potentially-significant non-physical simulation artifact.
The computational gain from approximating the friction cone
is not clear given that the LCP introduces many auxiliary
variables and constraints, and thus [12], [13] propose to solve
the original NCP with a non-smooth Newton method. It is
common practice to relax contact constraints by introducing
regularization [14] or softening [15], [16], [17], allowing
objects to interpenetrate due to numerical compliance.

Given that the true physics of contact involves compliance
and many of the approaches using rigid-body assumptions
introduce numerical compliance to make the problem tractable,
our work favors using compliant contact. Models in the litera-
ture include those for point contact based on Hertz theory [18],
volumetric models [19] and more sophisticated approaches
modeling contact patches [20], [21].

Coulomb friction can also be regularized by replacing the
strict friction-cone constraint with a smooth function of the
slip velocity and introducing a regularization parameter, or
stiction velocity, vs so that objects supposedly in stiction still
slide with a velocity smaller than vs; for example see [22].

By incorporating compliant contact forces and regularized
friction, we can write the system dynamics as a system of
continuous ordinary differential equations (ODEs). However,
we observe that in our simulations of manipulation tasks
the stiffness of the model is dominated by the regularization
of friction. In static equilibrium, the forces due to friction
balance the pull of gravity which would otherwise accelerate
the object downwards at g ≈ 9.8 m/s2. Using a typical vs
value of 10−4 m/s, the characteristic time scale introduced by
regularized friction is about τ ≈ vs/g ≈ 10−5 s, and thus our
error-controlled integrators must take steps as small as 0.1 µs
to resolve these highly stiff dynamics. As a result, integrators
spend most of the computational effort on resolving these
artificially introduced dynamics even when common grasping
tasks involve much larger time scales on the order of tenths
of a second. With implicit integration, stability theory says we
should be able to take large time steps once the system is in
stiction, even with a very small vs. This has proven difficult
in practice, however. In this work, we analyze the cause and
present methods that enable the realization of this theoretical
promise in practice.

We organize our work as follows. Section II introduces
the mathematical framework and notation. Section III intro-
duces our novel Transition-Aware Line Search (TALS) in the

context of implicit integration. We systematically assess the
performance of a variety of integrators using work-precision
plots on a series of proposed canonical test problems in
Section IV and measure the improvement in robustness and
performance introduced by TALS. We show TALS performs
best when freezing the configuration of the system and propose
an original Transition-Aware Modified Semi Implicit (TAMSI)
method in Section V. In section VI we show that TAMSI
handles transitions robustly and outperforms our best implicit
integrators for the simulation of relevant manipulation tasks.
In VI-C we demonstrate our method in two sim-to-real com-
parisons using a Kuka arm manipulation station. Final remarks
and future research directions are presented in Section VII.

II. MULTIBODY DYNAMICS WITH CONTACT

We start by stating the equations of motion and introducing
our notation,

q̇ = N(q)v, (1)

M(q)v̇ = τ (q,v) + JTc (q)fc(q,v), (2)

where q ∈ Rnq and v ∈ Rnv are the vectors of generalized
positions and velocities respectively, M(q) ∈ Rnv×nv is the
system’s mass matrix, τ (q,v) is a vector of generalized forces
containing Coriolis and gyroscopic terms, gravity, externally
applied forces, and actuation, and Jc and fc are contact
Jacobians and forces, defined in Section II-A. We explicitly
emphasize the functional dependence of fc(q,v) on the state
vector x = (q,v) given that we use a compliant contact model
with regularized friction. Finally, N(q) ∈ Rnq×nv in Eq. (2) is
the block diagonal mapping between generalized velocities v
and time derivative of generalized positions q̇. Together, Eqs.
(1) and (2) describe the system’s dynamics as

ẋ = f(t,x). (3)

A. Kinematics of Contact

In point contact, contact between sufficiently smooth non-
conforming surfaces can be simply characterized by a pair of
witness points Aw and Bw on bodies A and B, respectively
such that Aw is a point on the surface of A that lies the
farthest from the surface of B and vice versa. At the ith
contact we define the contact point Ci to be midway between
the witness points. For a given configuration q of the system
each contact point is characterized by a penetration distance
δi(q) and a contact normal n̂i(q) defined to point from
body B into body A. We denote with vc,i the velocity of
witness point Aw relative to Bw, which can be uniquely
split into normal velocity vn,i = Pn,ivc,i and tangential
velocity vt,i = P⊥n,ivc,i where Pn,i = n̂i ⊗ n̂i � 0 and
P⊥n,i = I − Pn,i � 0 are projection matrices in R3×3.

For a state with nc contact points we group the velocities
vc,i of all contact points in a vector vc ∈ R3nc . In Eq.
(2) the contact Jacobian Jc(q) ∈ R3nc×nv maps generalized
velocities to contact point velocities as vc = Jcv. We group
the scalar separation velocities vn,i = n̂i · vc,i into a vector
vn ∈ Rnc so that vn = Jnv, where Jn = N̂T Jc ∈ Rnc×nv
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is the normal velocities Jacobian and N̂ = diag({n̂i}) ∈
R3nc×nc . For the tangential velocities we write

vt(q,v) = Jt(q)v, (4)

with Jt(q) = P⊥n (q)Jc(q) ∈ R3nc×nv the Jacobian of
tangential velocities and P⊥n (q) = diag({P⊥n,i}) ∈ R3nc×3nc .
The reader should notice the difference in sizes for vn ∈ Rnc

grouping the scalar separation velocities, and for vt ∈ R3nc

grouping 3D tangential velocities. This choice simplifies the
exposition that follows.

B. Compliant Contact with Regularized Friction

The normal component of the contact force is modeled
following the functional form proposed in [23], which is
continuous in both penetration distance δi and rate δ̇i as

πi = ki(1 + di δ̇i)+δi+, (5)

where (·)+ = max(·, 0) and ki and di are stiffness and
damping parameters. Thus, the normal component of the
contact force on body A applied at Ci is fn,i = πin̂i.
These parameters can be treated as either physical parameters
computed for instance according to the theory of Hertz contact
as in [20] or as numerical penalty parameters as in [15],
[24]. Since the penetration distance δi is defined positive
for overlapping geometries, its time derivative relates to the
separation velocity vn,i by δ̇i = −vn,i.

We approximate the Coulomb friction force on body A at
Ci with a linear functional form of the tangential velocity vt,i,
though smoother functions can be used

ft,i = −µ̃i(‖vt,i‖/vs)πi v̂t,i, (6)

µ̃i(s) =

{
µi s, 0 ≤ s ≤ 1,

µi, 1 < s,
(7)

where µ̃(s) ≥ 0 is the regularized friction coefficient with
µi the coefficient of friction and vs, with units of velocity,
is the regularization parameter. We show in Section V-A that
regularized friction with positive slopes, i.e. µ̃′(s) ≥ 0 leads
to considerably more stable integration schemes.

As with velocities, we group contact forces fc,i into a single
vector fc(q,v) ∈ R3nc . We split the contact forces in their nor-
mal and tangential components as fc = fn + ft and define the
generalized forces due to contact as τn(q,v) = JTc (q)fn(q,v)
and τt(q,v) = JTc (q)ft(q,v). We note that, since ft = P⊥n ft
we can write

τt(q,v) = JTc (q) ft(q,v),

= JTc (q)
(
P⊥n (q)ft(q,v)

)
,

=
(
P⊥n (q)Jc(q)

)T
ft(q,v),

= JTt (q)ft(q,v). (8)

III. IMPLICIT INTEGRATION WITH TALS

We introduce our Transition-Aware Line Search (TALS)
method to improve the convergence and robustness of implicit
integration methods when using large time steps. We first
make a brief overview of the implicit Euler method, though

v*

v0

v1

v2
v

r(v)
vs vs

Fig. 2: Divergence of Newton-Raphson near stiction. Iterations
cycle between v2 and v1 indefinitely.

TALS can be used with other implicit integrators. Consider a
discrete step of size h from time tn−1 to time tn = tn−1 +h.
Implicit Euler approximates the time derivative in Eq. (3) using
a first order backward differentiation formula. The resulting
system of equations is nonlinear in xn and can be solved using
Newton’s method,

∆xk = −
(
Ak
)−1

r(xn,k);

xn,k+1 = xn,k + ∆xk, (9)

where k denotes the iteration number, the residual is defined
as r(x) = x− xn−1 − h f(x), and Ak = ∇xr(xk) is the
Jacobian of the residual. We use the integrators implemented
in Drake [24] which use the stopping criterion outlined in [25,
§IV.8] to assess the convergence of Newton iterations.

A. Transition-Aware Line Search

We observed the Newton iteration in Eq. (9) most often
fails during slip-stick transitions when using large time steps
given that Ak in the sliding region, ‖vt,i‖ > vs, is not a
good approximation of Ak in the stiction region, ‖vt,i‖ < vs.
This problem is illustrated in Fig. 2 for a 1D system, showing
the Newton residual as a function of sliding velocity. Notice
the sharp gradient in the region ‖vt,i‖ < vs due to the
regularization of friction. An iterate with positive velocity
v0 will follow the slope to point v1 on the negative side.
Given the transition into the stiction region is missed, next
iteration then follows the slope to v2 once again on the positive
side. Subsequent iterations continue to switch back and forth
between positive and negative velocities without achieving
convergence. We found this can be remediated by limiting
an iteration crossing the stiction region to fall inside of it. As
soon as Ak is updated with the more accurate, and larger, value
within the stiction region, Newton iterations proceed without
difficulties.

Similar to other system-specific line search approaches [12],
[26], for three dimensional problems TALS limits the iteration
update in Eq. (9) according to xn,k+1 = xn,k + α∆xk

where α ∈ [0, 1]. If we freeze the configuration q in Eq.
(4), this is equivalent to limiting the tangential velocity of
each contact point according to vn,k+1

t,i = vn,kt,i +α∆vkt,i, with
∆vkt,i the change predicted by Eq. (9), see Fig. 3. We monitor
transition to stiction by detecting the moment at which the
line connecting two iterations intersects the stiction region,
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Fig. 3: TALS limits the update of tangential velocities for
the next Newton iteration when it detects transitions through
the stiction region (left). We found that limiting updates to a
maximum angle θMax improves robustness (right).

inspired from the idea used in [27] to compute incremental
impulses for impact problems.

TALS proceeds as follows: given a pair of iterates xn,k and
xn,k+1 from Eq. (9), we update tangential velocities according
to Eq. (4). At the ith contact point, if the line connecting
vn,kt,i and vn,k+1

t,i crosses the stiction region, we compute αi
so that vn,k+1

t,i ·∆vkt,i = 0. Even if transition is not detected,
we also limit large angular changes between vn,kt,i and vn,k+1

t,i

to a maximum value θMax, see Fig. 3. In practice we found
the angular limit to increase robustness and use θMax = π/3.
We finally compute the global TALS limiting parameter as
α = min({αi}).

B. Implementation Details

We incorporate TALS in the implicit integrators imple-
mented in Drake [24]. Drake offers error-controlled integra-
tion to a user-specified accuracy a, which translates roughly to
the desired number of significant digits in the results. We can
also control whether to use a full- or quasi-Newton method
with Jacobian update strategies as outlined in [25, §IV.8].

We make the distinction between error-controlled and
convergence-controlled integration, which retries smaller time
steps when Newton iterations fail to converge, as described in
[25, §IV.8]. All of our fixed-step integrators use convergence
control.

IV. INTEGRATION PERFORMANCE

We evaluate TALS with fixed-step and error-controlled
implicit Euler (IE) integrators. The precision obtained with
fixed-step integrators is controlled via the time step size h. In
contrast, error-controlled integrators adjust the time step size
to meet a user-specified accuracy a, with additional overhead
for local error estimation.

Our objective is to evaluate the trade-off between perfor-
mance and precision for a variety of integration methods and
understand if it is worth paying the additional cost of error-
controlled integration. We accomplish this by creating so-
called work-precision plots that measure cost vs. precision
in the solution. We use the number of evaluations of the
system’s dynamics f(t,x) as a metric of work, including
the evaluations used to approximate the Jacobian of f(t,x)
through forward differencing. For precision we want a metric
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Fig. 4: Newton’s method misses stiction, oscillates, and does
not converge (top). TALS detects the transition to stiction,
limits the iteration update, and guides Newton’s method to
convergence (bottom).

that measures global error while avoiding undesirable drifts
observed over large periods, especially when using first order
methods. Therefore we localize our global error metric by
quantifying it within a time window ∆w. To be more precise,
we introduce the flow map y = Φτ (x0) such that y =

∫ τ
0
fdt

with initial condition y(0) = x0. We compute a solution
xm with the method under test at discrete times tm spaced
by intervals of duration ∆w. We then compute a localized
reference solution defined by xmr = Φ∆w

(xm−1), where
notice we use the test solution xm−1 as the initial condition
of the reference solution xmr for the next time window ∆w.
In practice we integrate xmr numerically with a much higher
precision than the errors in the solution we want to measure.
Finally, we make an error estimate by comparing x with the
reference xr, see below.

A. Performance Results with a Small System

We choose a simple 2D box system that exhibits periodic
stick-slip transitions. The box of mass m = 0.33 kg lies on
top of a horizontal surface with friction µ = 1.0 and is forced
to move sideways by an external harmonic force f(t) of am-
plitude 4 N and a frequency of 1 Hz. The system’s dynamics
for this case reduces to mv̇ = f(t)− µ̃(v)W sgn(v), with W
the weight of the box in Earth’s gravity of g = 9.8 m/s2 and
µ̃(v) as defined in Eq. (7) with vs = 10−4 m/s.

Using a fixed time step h = 10 ms, much larger than
the time scale introduced by regularized friction, we observe
Newton iterations not to converge as described in Section
III-A. Figure 4 shows the Newton residual history the first
time, at t = 0.160 s, the box transitions from sliding into
stiction. TALS is able to detect transition, properly limit the
iteration update and even recover the second order convergence
rate of Newton’s method.

Figure 5 shows a work-precision plot with an error estimate
ev in the horizontal velocity v defined as the L2-norm of the
difference between the solution {vm} and the reference solu-
tion {vmr }. We use a localized global error estimate computed
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Fig. 5: We evaluate implicit Euler integration performance
with full- (FN) and quasi- (QN) Newton updates, each with
and without error control (EC), and with and without TALS.

with ∆w = 25 ms and a reference solution computed by a
3rd order Runge-Kutta with fixed step of h = 10−7 s. Each
point in this figure corresponds to a different accuracy a when
using error control, or a different time step h when using fixed
steps. The same error metric in the horizontal axis allows for
a fair comparison.

We observe the expected theoretical first order slope for
errors near vs or smaller. However, for errors larger than vs,
integrators without TALS depart from the theoretical result
as their performance degrades. Figure 5 shows that TALS
improves performance by extending the range in which the
first order behavior is valid, up to a factor of 10 (FN) or 3
(QN).

B. Performance with Larger Systems

When we applied TALS with implicit Euler to systems
with more degrees of freedom, we found TALS to be highly
sensitive to changes in the configuration q of the system.
Specifically, we observed iterations during which tangential
velocities fall outside the region ‖vt‖ < vs even after TALS
detects a transition and limits the Newton update. We traced
this problem to changes in the tangential velocities Jacobian
Jt(q) in Eq. (4) caused by small changes to the configuration
q. These iterations during transition steps often result in the
same convergence failure as experienced by integrators with-
out TALS (Figure 4), leading to a performance deterioration.

V. TRANSITION-AWARE SEMI-IMPLICIT METHOD

We draw from the lessons learned in the previous section
to design a scheme customized for the solution of multibody
dynamics with compliant contact and regularized Coulomb
friction. Based on the observation that TALS is sensitive to
changes in the system configuration q, we decided to freeze
the configurations in Eq. 2 so that we could iterate on the
generalized velocities without changes in the configuration
affecting the stability of TALS. An important computational

advantage of this approach is that the typically demanding
geometric queries only need to be performed once at the
beginning of the time step.

This is the same idea behind the semi-implicit Euler scheme.
This scheme, however, becomes unstable for stiff contact
forces in the normal direction since the position dependent
terms are treated explicitly as in the conditionally stable
explicit Euler scheme. Our TAMSI scheme deals with this
problem by introducing an implicit first order approximation
of the penetration distances with generalized velocities.

We introduce TAMSI in stages to analyze the properties
of different contributions separately. We start with the tradi-
tional semi-implicit Euler and highlight the differences as we
progressively introduce TAMSI.

A. Semi-Implicit Euler: One-Way Coupled TAMSI Scheme

The semi-implicit Euler scheme applied to Eqs. (1)-(2)
effectively freezes the normal contact forces to fn,0. In this
regard the scheme is one-way coupled, meaning that normal
forces couple in the computation of friction forces but not the
other way around.

Using a time step of length h, the semi-implicit Euler
scheme applied to Eqs. (1)-(2) reads,

q = q0 + N0v, (10)

M0v = p∗ + hJTc,0fc(q0,v), (11)

where the naught subscript in q0, v0, M0 = M(q0), JTc,0 =
JTc (q0), and N0 = N(q0) denotes quantities evaluated at the
previous time step. To simplify notation we use bare q and
v to denote the state at the next time step. We defined p∗ =
M0v0 +hτ (q0,v0) as the momentum the system would have
on the next time step if contact forces were zero. Since we are
interested in low-speed applications to robotic manipulation,
the gyroscopic terms in p∗ are treated explicitly. It is known
however that for highly dynamics simulations, more robust
approaches should treat these terms implicitly [28].

A semi-implicit Euler scheme solves Eq. (11) for v at the
next time step and uses it to advance the configuration vector
q to the next time step with Eq. (10). However this approach
often becomes unstable because the stiff compliant normal
forces are explicit in the configuration q.

To solve Eq. (11) we define the residual

r(v) = M0v − p∗ − hτn,0 − hτt(q0,v), (12)

and use its Jacobian in Newton iterations. The Jacobian is

∇vr(v) = M0 − h∇vτt(q0,v). (13)

Substituting in Eq. (8),

∇vτt(q0,v) = JTt,0∇vft(q0,v), (14)

= JTt,0∇vtft(q0,v)Jt,0, (15)

where we used Eq. (4) and ∇vt
ft = diag({∇vt,i

ft,i}) ∈
R3nc×3nc , with each block computed as the gradient with
respect to vt,i in Eq. (6):

∇vt,i
ft,i = −πi,0

[
µ̃(si)

‖vt,i‖
P⊥n (q) +

µ̃′(si)

vs
Pn(q)

]
, (16)
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where µ̃′(s) = dµ̃/ds. We introduce the tangential direction
Delassus operator as Wtt,0 = −JTt,0∇vtft(q0,v)Jt,0 and
write the Jacobian of the residual as

∇vr(v) = M0 + hWtt,0. (17)

We note that when µ̃′(s) ≥ 0, −∇vt,i
ft,i is a linear combi-

nation of positive semi-definite matrices and thus Wtt,0 � 0.
Therefore ∇vr(v) � 0, and its inverse always exists.

B. Implicit Approximation to Normal Forces

We present an approximation to treat normal forces im-
plicitly while still keeping the configurations frozen. For
simplicity, we consider frictionless contact first

r(v) = M0v − p∗ − hJTc,0fn(q,v), (18)

where notice we decided to freeze the contact Jacobian but not
the compliant contact forces.

To treat the normal contact forces implicitly while still
freezing the configuration at q0, we propose the following
first-order estimation of the penetration distance δi at the ith
contact point,

δi ≈ δi,0 − h vn,i, (19)

where we used the fact that δ̇i = −vn,i. We can then substitute
Eq. (19) into Eq. (5) to express the compliant forces, πi(vn,i),
as function of the normal velocities and group them into a
vector, π(vn) ∈ Rnc . We then express the normal forces as
fn(vn) = N̂0π(vn). This can then be used in Eq. (18) to
compute the Jacobian of the residual,

∇vr(v) = M0 − hJTc,0∇vfn(vn),

= M0 − hJTc,0∇vnfn(vn)Jn,0,

= M0 − hJTc,0N̂0∇vn
π(vn)Jn,0,

= M0 + hWnn,0, (20)

where we introduced the normal direction Delassus oper-
ator Wnn,0 = −JTn,0∇vnπ(vn)Jn,0 and ∇vnπ(vn) =
diag({dπi/dvn,i}). Eq. (5) implies dπi/dvn,i ≤ 0, and thus
Wnn,0 � 0. Therefore in Eq. (20)∇vr(v) � 0, and its inverse
always exists, explaining the high stability of this scheme for
contact problems without friction.

C. TAMSI: Two-Way Coupled Scheme

TAMSI is a semi-implicit Euler scheme in the friction forces
as introduced in Section V-A modified to implicitly couple
the compliant contact forces using the approximation in Eq.
(19). It is a two-way coupled scheme in that, in addition to
normal forces feeding into the computation of the friction
forces through Eq. (6), friction forces feedback implicitly into
the normal forces.

Freezing the position kinematics to q0 and using the ap-
proximation in Eq. (19), the full TAMSI residual becomes

r(v) = M0v − p∗ − hJTn,0π(vn)− hJTt,0ft(vt). (21)

We can then use the results from the previous sections,
except we also need to take into account how the friction

forces in Eq. (6) change due to changes in the normal forces.
Instead of the result in Eq. (15), we now have

∇vτt = JTt,0∇vft,

= JTt,0∇vt
ft Jt,0 + JTt,0∇vn

ft Jn,0,

= −Wtt −Wtn, (22)

where ∇vn
ft = −diag({µ̃iv̂t,idπi/dvn,i}) ∈ R3nc×nc .

We define the generally non-symmetric operator Wtn =
−JTt,0∇vnft Jn,0 ∈ Rnv×nv which introduces the additional
two-way coupling between compliance in the normal direction
and friction in the tangential direction.

Using these results we can write the Jacobian of the TAMSI
scheme as

∇vr(v) = M0 + h (Wnn,0 + Wtt,0 + Wtn,0) . (23)

Notice that, due to Wtn,0, the Jacobian is not symmetric
and in general not invertible; however, since M0 � 0, the
Jacobian is invertible for sufficiently small h.

After computing the next Newton iteration using this Jaco-
bian, we use TALS to selectively backtrack the iteration.

D. Implementation Details

We implemented a single-threaded TAMSI in the open-
source robotics toolbox Drake [24]. At this moment, our initial
implementation did not focus on performance but rather on
proving the stability and robustness of the method. Therefore
our initial implementation forms the Newton-Raphson Jaco-
bian in Eq. (23) explicitly. Forming M0 is an O(n2

v) operation,
while computing the Delassus operators in Eq. (23) via explic-
itly multiplying the Jacobians is O(n2

v ·nc). The factorization
of ∇vr is an O(n3

v) operation and we expect it to dominate for
large scenarios. However, even in our largest simulations with
hundreds of DOFs and hundreds of contacts [29], forming
this Jacobian is still the most expensive operation, followed
by its factorization. Performance can be greatly improved by
using matrix-free operators instead of explicitly forming the
contact Jacobians, allowing the assembly of ∇vr in O(n2

v).
Further improvements include exploiting the sparsity pattern
of ∇vr during both assembly and factorization as well as
parallelization for large scenes with hundreds of objects.

VI. RESULTS AND DISCUSSION

We present a series of simulation test cases to assess
robustness, accuracy and performance. For all cases we use
a regularized friction parameter of vs = 10−4 m/s, which
results in negligible sliding during stiction.

A. Parallel Jaw Gripper

To assess the robustness of our method in a relevant ma-
nipulation task with large external disturbances, we simulate
a parallel jaw gripper holding a mug and forced to oscillate
vertically with a period of T = 0.5 s and an amplitude of
A = 15 cm, see Fig. 6. To stress the solver in a situation with
slip-stick transitions, we chose a low coefficient of friction of
µ = 0.1 and a grip force of 10 N. The mug is 10 cm tall with
a radius of 4 cm and a mass of 100 g. There is no gravity.
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Fig. 6: Parallel jaw gripper model. We shake the mug vertically
to assess robustness.
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Fig. 7: Simulated time vs. wall-clock time for the parallel jaw
gripper case. All three runs use h = 3 ms. TAMSI is the
fastest, on the far left. The horizontal plateaus in the IE+FN
run indicate that without TALS, the integrator slows down
since it takes smaller step sizes for convergence control.

With a step h = 3 ms TAMSI completes 5 seconds of
simulation time with a single thread on an Intel i7-6900K 3.2
GHz CPU in 123 ms of wall-clock time, or 40× real-time rate.
In contrast, IE+FN with TALS is 25× slower than TAMSI and
IE+FN without TALS is 55× slower than TAMSI. Simulated
time vs wall-clock time for each is shown in Fig. 7. Next, we
perform a convergence study of TAMSI running with different
time steps and estimate errors against a reference solution
using h = 10−7 s, Fig. 8. As expected, TAMSI exhibits first-
order convergence with step size.

B. Allegro Hand

We simulate a 16 DOF Allegro hand controlled in open-
loop to perform a periodic reorientation of a mug, see Fig.
9 and the supplemental video accompanying this manuscript.
This interesting system includes multiple points of contact,
complex geometry and a large number of DOFs.

We observe that TALS does not improve the performance of
implicit Euler — as the system configuration q changes, the
tangent space reorients, and TALS is unable to properly control
iterations with transitions into stiction. TAMSI however, with
a time step h = 0.7 ms, runs 7.8× faster than our fastest in-
tegrator setup, the error-controlled implicit Euler using quasi-
Newton when solving to a (loose) accuracy of a = 0.01 m/s.
Our single-threaded TAMSI completes 15 seconds simulated
time on an Intel i7-6900K 3.2 GHz CPU in 7.0 s of wall-clock
time, or 2.14× real-time rate.
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Fig. 8: L2-norm of the generalized velocity errors against time
step, nondimensionalized with the problem’s period T and
amplitude A. Both translational and rotational DOFs exhibit
first-order convergence as expected.

Fig. 9: Model of a 16 DOF Allegro hand holding a mug. As
the hand reorients the mug, multiple simultaneous points of
contact securing the grasp are made.

C. Sim-to-Real Experiments

We demonstrate our simulation capability in two manipu-
lation tasks with closed-loop control involving force-feedback
and manipuland-world contact.

A Kuka IIWA arm (7 DOF) is outfitted with a Schunk
WSG 50 gripper. We use an inverse dynamics controller
with gains in the simulation set to best match reality, even
though the specifics of Kuka’s proprietary joint-level controller
are unavailable. The controller process tracks a prescribed
sequence of Cartesian end-effector keyframe poses and com-
putes desired joint-space trajectories using Jacobian IK. We
use force feedback to regulate the grasp force and judge for
placement success.

The gripper surfaces are slightly compliant. We identify the
stiffness parameters of the point contact model by matching
the level of compliance observed in the real hardware.

In the first task the robot is commanded to grab a water
bottle, perform a vigorous shaking motion, and place the bottle
at a new location, demonstrating the robustness of the method
to strong disturbances; see the supplemental video.

In the second task a Kuka arm in a kitchen scenario grabs
a mug and uses external contact with the sink to help reorient
the mug, relying on slip within the fingers of the gripper;
see Fig. 1 and the accompanying supplemental video. TAMSI
robustly handles multiple points of contact, changes in the
contact configuration, and stick-slip transitions.
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TAMSI enabled us to prototype this task entirely in simu-
lation with controllers that transitioned seamlessly to reality.

VII. CONCLUSIONS

In this work we systematically analyzed implicit integration
for multibody problems with compliant contact and regu-
larized friction. Error-controlled implicit Euler with quasi-
Newton iterations performs best, though it spends a significant
amount of time resolving the high-frequency transition dynam-
ics introduced by regularized friction. Our new TALS method
helps to address this problem, though its performance degrades
as the configuration of the system changes and contact surfaces
reorient. This observation led us to develop our novel TAMSI
method. TAMSI approximates penetration distances to first-
order to couple contact forces implicitly while performing
only a single geometric query at the beginning of a time
step, resulting in improved performance. We demonstrate the
added robustness and performance of TAMSI with simulations
of relevant manipulation tasks. Sim-to-real comparisons show
the usage of TAMSI to prototype controllers in simulation that
transfer effectively to reality.

Additional examples can be found in the “examples” source
directory of the open-source robotics toolbox Drake [24] and
in the “Drake Gallery” section of the documentation.

Ongoing work conducted at the Toyota Research Institute
is leveraging the proposed method for prototyping and val-
idating controllers for robot manipulation in dense cluttered
environments [29] and extending TAMSI to work with more
sophisticated contact models [21].
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