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Abstract

Many objects of interest in imaging, such as biological cells or turbulent air, are
phase-only objects that are transparent and thus produce little to no contrast in
wide-field microscopes. The phase accumulated by this light carries important in-
formation about the refractive index and the thickness of the object. We propose a
method for retrieving the phase by using a spatial light modulator (slm) to conju-
gate the phase of the object, flattening the wavefront of light passing through the
slm and the object. After we flatten the wavefront, the resulting configuration on
the slm is the conjugate of the phase image, which we can easily invert to recover
the original phase image. This method retrieves the phase without using any prior
knowledge about the object.

Our algorithm performs a decomposition of the image into basis functions and
searches for the coe�cients that yield the flattest output intensity pattern. This
algorithm takes advantage of the fact that a relatively small number of basis el-
ements can store the majority of the information in the image. Popular phase
retrieval methods such as the Gerchberg–Saxton algorithm can only converge to
the phase image under light that is su�ciently coherent. From our simulations,
we find that our method consistently produces correlations of over 99% with the
original phase image, using either incoherent or coherent light and only 10% as
many basis elements as the number of pixels in the image. We believe this result is
a strong indication that this method will be able to reliably retrieve a direct phase
image in the laboratory.
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Chapter 1

Introduction

Light has many properties, two of which are intensity and phase. When treating
light as a wave, its intensity is related to its amplitude, and its phase is the fraction
of the wave cycle that the electric (E) and magnetic (B) fields have completed at a
point in time and space. While we can observe most objects using just the intensity
of the light coming from the object, many objects of interest in imaging, such as
biological cells or density variations in transparent media, are phase-only objects
that are transparent. and thus provide little or no contrast when viewed through
wide-field imaging systems. Conventional cameras cannot detect the phase of the
optical waves because their exposure times, which are the durations over which
the energy from light is integrated, are much larger than the period of the electro-
magnetic oscillations of the light. The intensity of light that passes through such
objects is not a↵ected, whereas the phase of the light waves may change strongly.
This change in phase is known as the wave retardation due to the object. The wave
retardation accumulated by this light carries information about the e↵ective opti-
cal path length, which is the product of the refractive index and the thickness of
the object. This information is especially important in both atmospheric contexts,
for understanding phenomena such as turbulence,[1] and biological contexts, for
understanding the structure of microscopic living organisms.[2]

Phase retrieval[3][4] is the process of recovering the phase information lost
when making physical measurements that are only sensitive to intensity. Various
past approaches to solve this problem include the Gerchberg–Saxton algorithm,[5]
phase contrast microscopy,[6] and Schlieren imaging.[7] We will soon explain the
Gerchberg–Saxton algorithm and phase contrast microscopy to illustrate some of
the drawbacks of these methods that our approach will be able to address.

Another property of light is its coherence. The coherence of light measures how
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CHAPTER 1. INTRODUCTION

likely a phase measurement of a light wave at one point in time and space will be
able to accurately predict the phase of the wave after it has travelled for some time.
If the light is not monochromatic, then the di↵erent wavelengths would cause the
light to lose coherence as it propagates, as di↵erent frequencies of light change
their phase at di↵erent rates. Most lights from lasers are relatively coherent, while
light from room lighting is often incoherent. Incoherent light behaves di↵erently
from coherent light as it propagates: incoherent light has a much shorter correla-
tion time than coherent light, so information from interference patterns is lost due
to averaging by detectors. As a result, interference patterns do not appear as easily
under incoherent illumination.

One of the most commonly used phase-retrieval methods, which requires a co-
herent illumination of the object, is the Gerchberg–Saxton algorithm.[5][8] This
algorithm is a numerical approach developed in the 1970s that takes two images
of an object, one in the object plane and one after propagating into the far field,
and iteratively calculates the phase by propagating it in simulation. While this
approach is useful for recovering a direct phase image, it requires the illumina-
tion to be coherent: this is because the phase is not well-defined under incoherent
lighting, making it di�cult to be able to simulate both the forward and the inverse
propagations.

A technique that enables phase retrieval under incoherent lighting is phase
contrast microscopy.[6] It is a revolutionary technique developed in the 1940s that
enables a user to see phase shifts in light by using a two-lens setup with a phase-
shift mask at the focus between both lenses. If the phase-shift mask were narrow
enough, the phase contrast microscope would be able to produce a direct phase
image, but it is not feasible to produce such a narrow mask. In practice, the user
can only see phase contrasts, which are the sharp boundaries of regions of smooth
phase. While this technique enables an image of phase contrasts, it does not re-
construct the direct phase image.

To address these drawbacks, we propose an approach for phase retrieval that
“inverts” the distortions due to the sample. This approach combines structured
illumination[9][10] and adaptive optics[11] with a spatial light modulator (slm) to
“pre-compensate” the e↵ect of the object, so that after passing a flat beam through
both the slm and the object, the light looks like a flat beam again. When the cam-
era records a flattened wavefront, optimization is achieved and the slm displays
a phase-conjugated version of the object phase. This approach can produce a di-
rect phase image, not only with coherent illumination, but also with incoherent
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CHAPTER 1. INTRODUCTION

illumination. The quality of the reconstruction does not deteriorate as the illumi-
nation gets less and less coherent. As a result, our approach enables phase retrieval
without the need for coherent light.

Before proceeding to the lab to test this approach with an actual setup, we
simulated the process in order to test it without the noise and other di�culties as-
sociated with the experiment. In addition, the relative ease of simulations enabled
us to easily fine-tune the process without expending large amounts of time. Since
simulations have limitations, an actual experiment will ultimately be necessary
to confirm the feasibility of our process. However, the actual experiment has not
yet been performed, but we designed the simulations to match the experimental
conditions as closely as possible.

In Chapter 2 we will introduce the fundamental principles of wave optics, de-
scribe the Gerchberg–Saxton in more detail, and introduce the concept of inco-
herent light. We will then discuss the details of our phase retrieval process in
Chapter 3, starting with the optical setup, followed by the math that motivates
the development of our specific process, finishing with the implementation de-
tails for the exact process. Afterwards, in Chapter 4, we will present the results of
our simulations and show that the reconstruction qualities for both coherent light
are acceptable. In Chapter 5 we will show the same results for incoherent light
and show that under incoherent light, our process performs much better than the
Gerchberg–Saxton algorithm. We expect that these results indicate promise for a
successful experimental demonstration of our process.

Phase imaging is important for many applications where the user needs to ob-
serve properties of a transparent object. Current methods such as the Gerchberg–
Saxton algorithm or phase contrast microscopy either require coherent light or do
not produce a direct phase image. Our method opens up the possibility of recon-
structing a direct phase image under conditions of incoherent light, which can be
very helpful in everyday usage.

3



Chapter 2

Theory

In this chapter we will introduce the fundamental principles of wave optics. First
we will derive the wave equation fromMaxwell’s equations in Section 2.1. We will
then introduce the phase retrieval problem in Section 2.2 and introduce notation in
the context of our wave equations. Using this notation, wewill derive in Section 2.3
the Huygens–Fresnel equation, the Fresnel di↵raction equation, and the quadratic
phase factor of a lens due to the paraxial approximation, all of which are standard
tools in wave optics. Using these tools, we will show that the right lens placed
at the correct location performs a spatial Fourier transform from an input to an
output plane. Afterwards, we will present in Section 2.4 the Gerchberg–Saxton
algorithm for phase retrieval, which we will use as a standard against which we
will compare our process. Lastly, we will discuss in Section 2.5 the concept of
incoherent light and how we will test both the Gerchberg–Saxton and our process
using partially coherent light.
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CHAPTER 2. THEORY

2.1 Wave Equation

This is the derivation fromGri�th’s Introduction to Electrodynamics[12] of the wave
equation of light. We start with Maxwell’s equations in a vacuum with no charge
or current:

r ·E = 0; (2.1)

r ·B = 0; (2.2)

r⇥E = �ÄB
Ät

; (2.3)

r⇥B = µ0✏0
ÄE
Ät

. (2.4)

Applying a curl to equation (2.3), we have that

r⇥ (r⇥E) = � Ä

Ät
(r⇥B); (2.5)

r(r ·E)�r2E = � Ä

Ät
(r⇥B). (2.6)

Substituting equations (2.4) and (2.1) into equation (2.7),

r(0)�r2E = �µ0✏0
Ä2

Ät2
E; (2.7)

r2E =
1
c2

Ä2

Ät2
E. (2.8)

where we let c be the speed of light in a vacuum, defined as the velocity of this
wave. A similar analysis on the equivalent equations forB would produce the same
wave equation for the B-field. Because these are coupled equations of divergence-
free fields, E and B must be transverse waves.

In a vacuum, the x,y, and z components of E and B would each satisfy the
scalar wave equation,1

r2u(P,t) = 1
c2

Ä2

Ät2
u(P,t). (2.9)

1In reality, the wave is a transverse wave with no field component along the direction of propa-
gation. This statement is still true, however, because 0 satisfies the equation.

5



CHAPTER 2. THEORY

2.2 Phase Retrieval

Let us consider a coherent monochromatic plane wave. Without loss of generality,
let us assume that the direction of propagation of light is in the z direction. We
can use the complex-valued function u(P,t) to denote the E-field perturbation at
position P at some time t and in some polarization (either x or y). To get back the
actual physical field, we would just take the real part of our function u.2 For a co-
herent monochromatic wave, we can use a complex phasorU(P), which represents
the amplitude and phase as a function of position, so that u(P,t) =U(P)exp(�j!t).
This allows us to simplify the math further without having to ever deal with the
constant-frequency time-varying sinusoid.

Consider a thin object A that lives in the x,y plane. When the thin object is
placed in the path of light, the e↵ect of the object is to apply a multiplication to
the light field. This can be described by a transmittance function, tA(x,y), which
describes the multiplicative change that the light undergoes as it passes through
the object. When light with a complex field of ul(x,y) passes through the object, it
exits with a complex field of ul 0 (x,y) = tA(x,y)ul(x,y).

A phase-only object is an object A that has no absorption, i.e. |tA| = 1. We will
let �A(x,y) = �arg(tA(x,y)), the wave retardation or phase of the object. Since we
can only measure3 the intensity I(x,y) = |u(x,y)|2 at each point, it can be di�cult to
reconstruct the function �A(x,y). For our purposes, phase retrieval is the process
of recovering the phase image, �A(x,y), at each location (or pixel) of a phase-only
object.[3]

2.2.1 Tools available

To solve this phase retrieval problem, we have lenses, phase spatial light modula-
tors (slms), and cameras. A camera allows us to measure the intensity of light at
each pixel on a plane. As we will soon show, a lens is a tool that essentially enables
us to take the spatial Fourier transform of the field. We can do this by placing the
lens a focal length after the input field, and measuring the output field at a focal
length after the lens. If we place two lenses in our path such that the first lens is
2The complex value is just meant to simplify the math. In case there is confusion, note that it is

not meant to represent two dimensions, so the imaginary axis of u for the x-direction of the E-field
does not refer to the E-field in the y direction. Instead, we can just apply the same analysis for both
polarizations of light and add them up.
3Again, this is based on the assumption in the footnote in the introduction, that our detector

integrates the light over many periods.
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CHAPTER 2. THEORY

a focal length after the previous object, the second lens is two focal lengths after
the first lens, and the next object (or the detector) is a focal length after the second
lens, then we e↵ectively perform two Fourier transforms and get back the original
image, up to a constant phase di↵erence.

A phase slm is a pixelated device that can be inserted in the optical path and
can generate an arbitrary transmittance function tA on a plane. This transmittance
is phase-only, and the phase values of our slm span a range that is greater than
2⇡. The transmittance can be individually configured at each pixel by connecting
the slm to a computer and using it as a monitor.

2.3 Wave-Optics Analysis

In this section we will show how to compute the propagation of light using Fourier
optics. We will start with the wave equations derived from Maxwell’s equations
earlier, and we will proceed to derive the Huygens–Fresnel principle,

2.3.1 Huygens–Fresnel Principle

This is the derivation of the Huygens–Fresnel principle from Goodman’s Introduc-
tion to Fourier Optics[13] of the Rayleigh–Sommerfeld formulation of di↵raction,
which predicts the light field at one point in space by summing the aggregate con-
tributions from di↵erent points in an aperture. This equation will be used in the
next section (Section 2.3.2) to derive Fresnel di↵raction.

We start with our definition of the complex phasor U , and substitute it into the
wave equation:

u(P,t) =U(P)exp(�j!t); (2.10)

r2u(P,t) = 1
c2

Ä2

Ät2
u(P,t), (2.11)

r2U(P)exp(�j!t) = �!
2

c2
U(P)exp(�j!t), (2.12)

0 = (r2 + k2)U(P), (2.13)

where k is the wave number !/c. This is the Helmholtz equation.
In addition, we will use Green’s theorem, stated in the following way: let U(P)

and G(P) be two complex-valued functions of position and V be a closed volume

7



CHAPTER 2. THEORY

in space. If U and G are continuously second-di↵erentiable, then we have

U

V
(Ur2G �Gr2U )dv =

U

ÄV

 
U
ÄG

Än
�GÄU

Än

!
ds, (2.14)

where dv is a di↵erential volume unit, ds is a di↵erential surface unit, ÄV is the
enclosing surface of V , and Ä/Än is a partial derivative in the outward normal
direction on the surface, away from V .

Suppose we want to find the complex phasorU(P0) at point P0. We can letU(P)
from the theorem be our complex phasor U(P), and we can choose any function
G that satisfies the requirements of the theorem. We will call this the Green’s
function of the problem. Kirkho↵ chooses G(P1) to be a spherical wave expanding
from P0. This would become

G(P1) =
exp(jkr01)

r01
. (2.15)

This has a singularity at P1 = P0; however, we can pick our volume V to be a large
region of space surrounding the point P0, but excluding a small region of diameter
✏ that contains P0. We note that in this region, G also satisfies the Helmholtz
equation,

(r2 + k2)G = 0. (2.16)

This means that we can simplify the left-hand side (lhs) of Green’s theorem to
zero:

U

V
(Ur2G �Gr2U )dv = �

U

V
(UGk2 �GUk2)dv = 0. (2.17)

Let S be the outer boundary of the region and S✏ be the inner boundary of the
region V . Since the lhs of Green’s theorem is zero, we can set the right-hand side
(rhs) equal to zero:

0 =
U

ÄV

 
U
ÄG

Än
�GÄU

Än

!
ds; (2.18)

0 =
U

S✏

 
U
ÄG

Än
�GÄU

Än

!
ds +

U

S

 
U
ÄG

Än
�GÄU

Än

!
ds. (2.19)
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CHAPTER 2. THEORY

The partial derivative is

ÄG(P1)
Än

= cos(n,r01)
 
jk � 1

r01

!
exp(jkr01)

r01
, (2.20)

where cos(n,r01) is the cosine of the angle between n and r01.[13]
If we choose S✏ to be a sphere with radius ✏/2, the cosine is �1. In addition, as

✏! 0 and using the fact that U is continuous at P0, the integral over S✏ converges
to 4⇡U(P0).4 Substituting into equation (2.17), we have that

U(P0) =
1
4⇡

U

S

 
ÄU

Än
G �U ÄG

Än

!
ds. (2.21)

Consider a function f that both satisfies the Helmholtz equation over V and
is continuously di↵erentiable at P0. We can choose G0 = G � f as another Green’s
function, and this Green’s function would also give us the same result for U(P0)
in equation (2.21). This is because the lhs of Green’s theorem would remain zero
since f satisfies the Helmholtz equation over V , and the integral over S✏ of the f

component of G0 would converge to zero because f is continuously di↵erentiable
and the integration domain approaches zero as ✏! 0. As a result, equation (2.21)
remains identical, except with G0 instead of G.

This can help us solve another problem: suppose we have light coming through
an aperture E in a plane. We want to measure the phasor U(P0) at P0. We can now
choose f (P1) as another spherical wave, with the center P2 at the reflection of P0
across the plane. Then we can choose a region enclosed by a boundary that has a
planar portion (S1) on the plane that contains E and spreads out as a sphere (S2)
of radius R away from P0. Since the region is on P0’s side of the plane that contains
E, P2 is not in this region, so f satisfies the conditions we just gave. Therefore we
can let G� = G � f be our Green’s function, which is

G�(P1) =
exp(jkr01)

r01
� exp(jkr21)

r21
. (2.22)

This function vanishes on the plane that E resides on. To match with our phys-
ical problemU must also vanish in the region of S1 that is outside aperture E. This
means that the integral vanishes for the region of S1 outside of E, since U and G�
are both zero in this region. Secondly, if the fieldU satisfies the Sommerfeld radia-
tion condition, which states thatU vanishes at least as fast as a spherical wave,[13]
4See Goodman page 42[13] for a line by line evaluation of this limit.
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the integral in the region S2 will also vanish as R!1. This leaves us with only an
integral over the aperture E remaining:

U(P0) =
1
4⇡

U

E

 
ÄU

Än
G� �U

ÄG�
Än

!
ds (2.23)

= � 1
4⇡

U

E
U
ÄG�
Än

ds. (2.24)

This is the first Rayleigh–Sommerfeld solution.[13]
The corresponding partial derivative of G�, for P1 2 E, is

ÄG�(P1)
Än

= 2cos(n,r01)
 
jk � 1

r01

!
exp(jkr01)

r01
. (2.25)

When r01� �, the jk term would be much greater than 1
r01

. Hence we can drop the
1
r01

term, leaving

ÄG�(P1)
Än

= 2jk cos(n,r01)
exp(jkr01)

r01
. (2.26)

Substituting into the first Rayleigh–Sommerfeld solution (Equation (2.24)), we
have the Huygens–Fresnel principle:

U(P0) =
k

2⇡j

U

E
U(P1)cos✓

exp(jkr01)
r01

ds, (2.27)

where ✓ is the angle between the normal to surface E facing away from P0 and the
vector from P0 to P1, the point on E.

This equation says that the points on a wavefront can be treated as new point
sources, with a directivity pattern cos✓ and complex amplitudes proportional to
the phasor value U(P1) and the wave number k.

2.3.2 Fresnel Di↵raction Equation

The Fresnel Di↵raction Equation is an equation that approximates the propagation
of a light wave from one (x,y) plane to another in the z direction. To derive this, we
will need to use the Fresnel approximation, which is accurate for any propagation
distance that is much longer than the wavelength of light.5

5Although the Fresnel approximation at first glance seems to be only accurate within a region
where the displacement in (x,y) is much smaller than the displacement in z, the integral over these
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First we will present the explicit form of this equation: consider a source plane
and a destination plane, both parallel to each other with a separation distance of
z. Let (⇠ ,⌘) be coordinates within the source plane. The di↵racting aperture or
any interesting objects lie in the (⇠ ,⌘) plane. Let (x,y) be coordinates within the
destination plane, where we make our measurement. We will let U(x,y) refer to
the complex phasor at the point (x,y). In terms of an actual E field, the real part
of U would represent the phasor in one direction of polarization (e.g. Ex), and
the same exact equation can be separately applied to all directions of polarization.
The equation is then: ([13])

U(x,y) =
ejkz

j�z
ej

k
2z (x

2+y2)
U ⇢

U(⇠ ,⌘)ej
k
2z (⇠

2+⌘2)
�
e�j

2⇡
�z (x⇠+y⌘)d⇠ d⌘. (2.28)

To derive this equation, we can start with the Huygens–Fresnel equation, and
convert it to rectangular coordinates:

U(P0) =
1
j�

U

U(P1)
exp(jkr01)

r01
cos✓ ds. (2.29)

Substituting P0 = (x,y), P1 = (⇠ ,⌘), and cos✓ = z/r01,

U(x,y) =
z
j�

U

U(⇠ ,⌘)
exp(jkr01)

r201
d⇠ d⌘, (2.30)

where

r01 =
q
z2 + (x � ⇠)2 + (y � ⌘)2. (2.31)

To perform the Fresnel approximation, we do a binomial expansion of r01/z,
such that we keep as many terms as needed so that there is one surviving term
that varies in (x,y). In other words, we let

b =
✓x � ⇠

z

◆2
+
✓y � ⌘

z

◆2
, (2.32)

approximations will allow the error to cancel out for large (x,y) so that the approximation will
be accurate even for (x,y) comparable or larger than z. See Goodman pages 68-72[13] for a more
detailed discussion.
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and assume that b⌧ 1 to approximate

r01 = z
p
1+ b (2.33)

⇡ z
✓
1+

1
2
b
◆
, or (2.34)

⇡ z, (2.35)

where the first approximation is used for the r01 within the exponential and the
second is used for the r01 in the denominator.

Substituting our approximations into equation (2.30), we have that ([13])

U(x,y) =
1
j�z

U

U(⇠ ,⌘)exp
(
j
k
2z

[2z2 + (x � ⇠)2 + (y � ⌘)2]
)
d⇠ d⌘ (2.36)

=
exp(jkz)

j�z

U

U(⇠ ,⌘)exp
(
j
k
2z

[(x � ⇠)2 + (y � ⌘)2]
)
d⇠ d⌘ (2.37)

=
ejkz

j�z
ej

k
2z (x

2+y2)
U

U(⇠ ,⌘)exp
"
j
k
2z

(⇠2 + ⌘2)
#
e�j

k
z (x⇠+y⌘)d⇠ d⌘. (2.38)

This equation is now identical to equation (2.28). We can also see that the inte-
gral is a Fourier transform of the product of the field in the original plane and
a quadratic phase factor. So essentially, Fresnel di↵raction is a multiplication by
a quadratic phase factor, followed by a Fourier transform, followed by another
multiplication by a quadratic phase factor and some constants.

Although we assumed that b ⌧ 1, it turns out the integral integrates out the
error well enough that this leading-term approximation is accurate almost every-
where, as long as the planes are separated by many wavelengths apart (z � r01).
See Goodman pages 68 to 72 for a more detailed explanation of the behavior of
this approximation.[13]

2.3.3 Quadratic Phase Factor of a Lens

A lens is defined as a thin lens if rays leaving the lens experience negligible trans-
lation from their positions of entrance. For a thin lens, the total phase delay ex-
perienced by a ray entering at coordinates (x,y) is proportional to the thickness of
the lens, assuming it is made of a uniform material. We can let the thickness be
�(x,y). We will now derive a quadratic approximation for this phase delay.[13]

We can approximate a lens as being composed of three portions, which are a
left-facing slice of a sphere (�1(x,y)), a central rectangular slice (�2(x,y)), and a
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Figure 2.1: Adapted from the illustration on page 99 of Goodman[13] for the calculation
of the thickness function. (a) illustrates how to calculate �1, (b) illustrates how to calculate
�2, and (c) illustrates how to calculate �3.

right-facing slice of a sphere (�3(x,y)). Using the right triangles from the diagram
in Figure 2.1,[13]

�1(x,y) = �01 �
 
R1 �

q
R2
1 � x2 � y2

!
(2.39)

= �01 �R1

0
BBBBB@1�

s

1� x
2 + y2

R2
1

1
CCCCCA ; (2.40)

�2(x,y) = �02; (2.41)

�3(x,y) = �03 +R2

0
BBBBB@1�

s

1� x
2 + y2

R2
2

1
CCCCCA . (2.42)

Summing the three thicknesses,

�(x,y) = �0 �R1

0
BBBBB@1�

s

1� x
2 + y2

R2
1

1
CCCCCA+R2

0
BBBBB@1�

s

1� x
2 + y2

R2
2

1
CCCCCA , (2.43)

where �0 is a constant, equal to the sum of the constants above.
To derive the quadratic phase factor, we make the paraxial approximation,

which is a binomial expansion of the value under the square root,
p
1� x ⇡ 1 + 1

2x

for small x. For this approximation to be accurate, the x,y values of interest must
be much smaller than R, which is on the order of the focal length. Applying the
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approximation,

�(x,y) = �0 �
x2 + y2

2

 
1
R1
� 1
R2

!
. (2.44)

The total phase delay, as a function of position, for a lens with a material that
has an index of refraction n, is

�(x,y) = kn�(x,y) + k[�0 ��(x,y)], (2.45)

therefore, the lens transmittance is

tL(x,y) = exp[jk�0]exp[jk(n� 1)�(x,y)]. (2.46)

Furthermore, the definition of focal length is

1
f
= (n� 1)

 
1
R1
� 1
R2

!
. (2.47)

Substituting in �(x,y) into equation (2.46),

tL(x,y) = exp[jkn�0]exp
"
�j k

2f
(x2 + y2)

#
. (2.48)

This equation is a quadratic phase factor that the lens applies, in the paraxial
equation, to the field. In the future, when we use equation (2.48), we will leave out
the constant phase factor, since it is applied equally to all (x,y) in this region.

2.3.4 Fourier Transforms from Lenses

The quadratic phase factor enables lenses to essentially perform 2D Fourier trans-
forms. Intuitively, this is because the quadratic phase factor from the lens can
cancel the quadratic phase factor in the Fresnel equation (2.28), allowing for an
unmodified Fourier transform. We will consider the example, as illustrated in Fig-
ure 2.2, of a collimated plane wave incident on an object (with transmittance tO)
placed a distance f in front of a lens (on the focal plane). In this example, the cam-
era is placed a distance f behind the lens (on the back focal plane). In fact, this is
the only optical setup that we will use in our process.

Let A be the amplitude of the plane wave. Let UO(x,y),UL(x,y) represent the
light transmitted by the input object and the light incident on the lens, respec-
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Object

Camera

Figure 2.2: This is an example setup with an object a distance f in front of a lens with focal
length f and a camera a distance f behind the lens.

tively, and let FO(fX, fY ),FL(fX, fY ) represent the Fourier spectrums of UO and UL,
respectively.[13] With this representation, UO = AtO,

FO(fX, fY ) = F {AtO}, and (2.49)

FL(fX, fY ) = F {UL}. (2.50)

Using the form of the Fresnel equation listed in equation (2.37),

UL(x,y) =
exp(jkz)

j�z

U

UO(⇠ ,⌘)exp
(
j
k
2z

[(x � ⇠)2 + (y � ⌘)2]
)
d⇠ d⌘, (2.51)

UL(x,y) =
U

UO(⇠ ,⌘)h(x � ⇠ , y � ⌘)d⇠ d⌘, (2.52)

where

h(x,y) =
exp(jkz)

j�z
exp

"
j
k
2z

(x2 + y2)
#
. (2.53)

The convolution theorem states that the Fourier transform of the convolution
of two functions f and g is the product of the Fourier transforms of the functions,
or in other words, ([13])

F (f ⇤ g) = F (f )F (g). (2.54)

Applying this theorem to equation (2.52),

FL(fX, fY ) = FO(fX, fY )exp[�j⇡�f (f 2
X + f 2

Y )], (2.55)

where we dropped the constant phase factor in front.[13]
When the (x,y) values we are concerned with are smaller than the lens, the light
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distribution after the lens, UL0 , is

UL0 =UL exp
"
�j k

2f
(x2 + y2)

#
. (2.56)

Using the Fresnel equation from equation (2.28) to propagate this light by a
focal length, the final light distribution, Uf , is

Uf (x,y) =
ejkf

j�z
e
j k
2f (x

2+y2)
U

UL(⇠ ,⌘)e
�j 2⇡�f (x⇠+y⌘)d⇠ d⌘ (2.57)

= e
j k
2f (x

2+y2)
FL(

x
�f

,
y

�f
), (2.58)

where we dropped the constant phase factor in front, and the quadratic phase
factors conveniently cancel. Substituting in equation (2.55), we have that

Uf (x,y) = FO(
x
�f

,
y

�f
) (2.59)

=
U

tA(⇠ ,⌘)exp
"
�j 2⇡

�f
(x⇠ + y⌘)

#
d⇠ d⌘. (2.60)

This means that the light field at the back focal plane is a Fourier transform of the
transmittance of the object, with distances scaled by a factor of k/f .

2.4 Linear Gerchberg–Saxton—A Phase Retrieval Al-
gorithm

One of the existing algorithms for phase retrieval is the Gerchberg–Saxton (GS)
algorithm. In this section, we introduce the GS algorithm because we will be com-
paring the results of our process with the results of the GS algorithm. This is a
purely numerical algorithm that is designed to reconstruct the phase from two in-
tensity images, provided that the optical transformation in between the systems is
linear and known. The transformation is usually a Fourier transform, which repre-
sents propagation through a lens in the setup described above. We would measure
the intensity image before the transformation, |UO |2, and the intensity image af-
ter the transformation, |Uf |2. (See Figure 2.3 for an illustration of this iterative
algorithm.) The algorithm consists of the following four simple steps:[5]

1. Fourier transform an estimate, ÛO of the initial light to get an estimate, Ûf ,
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Figure 2.3: This illustration of the Gerchberg–Saxton algorithm, is adapted from the
Wikipedia page for the Gerchberg–Saxton.[14] The four-step process approximates the
phase ' of the object using the source and the target intensity images.

of the final light.

2. Replace the modulus of the resulting estimate of the final light, Ûf with the
measured modulus, |Uf |.

3. Inverse Fourier transform the modified estimate of the final light, Ûf , to get
an estimate, ÛO, of the initial light.

4. Replace the modulus of the resulting estimate of the initial light, ÛO with
the measured modulus, |UO |.

These steps would repeat until the di↵erence in ÛO between two consecutive itera-
tions is small enough. The modulus of ÛO is the measured |UO |, and the argument
of the resulting ÛO is the final phase estimate.

This algorithm can easily be generalized to a larger class of algorithms, where
we replace the Fourier transform (F ) with any other linear transformation on the
wave. For example, we could put in Fresnel propagation as the transformation
instead of the Fourier transform, and obtain our two intensity images simply by
moving the camera along the path rather than inserting a lens. As long as the
transformation is linear, the algorithm is considered a linear GS algorithm.
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Although there are some known convergence issues in certain cases, these is-
sues have been studied extensively and mostly solved by many researchers includ-
ing Fienup and Wackerman 1986.[15] Our implementation of the GS algorithm
takes advantage of the methods described in [15] to overcome some of these modes
of stagnation. This ensures a fair comparison against the best GS algorithm for this
purpose.

However, even with these improvements, our simulations show that the GS al-
gorithm only converges for propagation under coherent and almost-coherent light.
Because the phase is not well-defined over a displacement in time or space, no pair
of functions exist that can both describe the propagation forward and the propa-
gation backwards of incoherent light. Therefore when incoherent light is used, the
Gerchberg–Saxton fails to converge.

2.5 Incoherent Light

The theory discussed so far assumes that the light we have is coherent. When
the phase relationships between di↵erent parts of a light field become statistically
unrelated, the light is said to be incoherent. To be precise, light is coherent if its
behavior over time can be represented in the form

u(P,t) =Ut(P)exp(�j!t) (2.61)

for some real-valued frequency ! and phasor Ut(P) that varies slowly and pre-
dictably over time. If this is true, then the phase relationship between two di↵er-
ent positions P1 and P2 in space can be described by the relationship between the
complex phases of Ut(P1) and Ut(P2).

To describe incoherent light, we can first rewrite the polychromatic light u(P,t)
as the following product:

u(P,t) =U(P,t)exp(�j!t), (2.62)

where ! is the mean frequency of the optical wave.[13] Then U(P,t) is similar to
a phasor, except it is time-varying. We can now introduce the concept of a mutual
intensity, which is the time-averaged covariance between U at two locations:

J(P1,P2) = hU(P1, t)U ⇤(P2, t)it , (2.63)
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where h·it denotes a time average. This mutual intensity is a measure of the “spa-
tial coherence”6 of the light between two points. It is useful because most detectors
are much slower than the frequency of light and therefore integrate the e↵ect of
light over time.

When light is completely incoherent, the covariance is zero whenever P1 , P2,
and nonzero when P1 = P2. When light is completely coherent, the phasors do not
vary over time, and so J is simply the product of the two phasors, U(P1)U ⇤(P2).

We will now show, based on Goodman’s derivations on pages 131 to 135,[13]
that when light is perfectly coherent, we have an imaging system that is linear
in complex amplitude, and when light is perfectly incoherent, we have an imaging
system that is linear in intensity.

Suppose the propagation of light can be described by a transfer function h(u,v)
such that the propagated light Uf is the convolution of h and the initial light Ui :

Uf (x,y, t) =
U

h(x � ⇠ , y � xi)Ui(⇠ ,⌘, t)d⇠ d⌘. (2.64)

We note that the intensity, If , is often the squared time-average of the magnitude
of the phasor, since detectors are a lot slower than frequencies. In other words,

If (P) = h|Uf (P,t)|2it (2.65)

=
U

dP1dP2h(P �P1)h⇤(P �P1)hUi(P1, t)U ⇤i (P2, t)it (2.66)

=
U

dP1dP2h(P �P1)h⇤(P �P1)Ji(P1,P2). (2.67)

WhenUi is completely coherent, as we noted, J =Ui(P1)U ⇤i (P2). This means that

If (P) =
U

dP1dP2h(P �P1)h⇤(P �P1)Ui(P1)U ⇤i (P2) (2.68)

=
�����

U

dP1h(P �P1)Ui(P1)
�����
2
= |Uf (P)|2. (2.69)

The last integral is a summation on the complex amplitude Ui , which means that
this system is linear in the complex amplitude Ui . On the other hand, when Ui is
completely incoherent, we canwrite J = CIi(P1)�(P1�P2)7, whereC is some constant

6See Goodman page 131-135[13] for a good definition of this term.
7The � is not exact, as the correlation length of J cannot get smaller than a wavelength. See [13]

for further explanation.
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and Ii is the squared magnitude of Ui . Substituting into equation (2.67),

If (P) = C

U

dP1dP2h(P �P1)h⇤(P �P1)Ii(P1)�(P1 �P2) (2.70)

= C

U

dP1
���h(P �P1)

���2Ii(P1). (2.71)

This last integral is a summation on the intensity Ii , meaning that this system is
linear in the intensity Ii . Intuitively, the cross terms of the intensity calculation
averaged out to zero, which resulted in only the individual intensities mattering
in this sum.

Besides completely coherent and completely incoherent light, there is partially
coherent light, which is light that is coherent at a close distance but incoherent at
a large distance. The spatial correlation is defined as

G(P1,P2) =
|J(P1,P2)|

|hU(P1)ihU(P2)i|
.

Based on our definition of J earlier, it is equal to 1 on the diagonal entries. On
the o↵-diagonal entries, the correlation is equal to 1 if the light is coherent or 0 if
the light is incoherent. However, if the light is partially coherent, the correlation
can be neither equal to 1 nor 0 on the o↵-diagonal entries. In fact, the correlation
G(P1,P2) falls o↵ as P1 gets farther away from P2, and oftentimes it is somewhat ex-
ponential, so that we can define a correlation length as the characteristic length of
the decay. This correlation length describes as the speckle radius rspeckle. Speckles
are regions where the phase is very correlated, and this radius describes the size
of speckles that can form in the illumination. A large speckle size indicates very
coherent light, while a small speckle size indicates almost-incoherent light.

Lastly, for incoherent light, it is no longer appropriate to talk about the phase of
the light after passing through an object. Instead, we use the term “wave retarda-
tion,” which measures the path length (multiplied by the wave number) that light
experiences as it passes through the object at di↵erent locations. This term has the
same meaning as the object phase for coherent light, but it is more appropriate to
use wave retardation when we discuss incoherent light.

We have briefly introduced incoherent light in terms of mutual intensity and
spatial correlation. More detailed discussions of the optics of incoherent light and
imaging can be found in references such as [16], [17], and [18].
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Methodology: Our Phase-Retrieval
Process

In this chapter we will describe our process, which retrieves the phase of a pure-
phase object by estimating an illumination that conjugates the phase of the object.
This problem requires us to work within a high dimensional space (for example,
guessing 10 values each for 60,000 pixels would require on the order of 1060,000

guesses). To reduce the number of total guesses required, we can break this pro-
cess up into separately guessing values within each dimension, one dimension at a
time. The basic idea is to guess linearly-independent patterns (which we will refer
to as “basis elements”) whose combination, in the correct mixture (which we will
refer to as the “coe�cients”), would accurately describe the shape of the object.
With each pattern, we would use the output of an optical process to determine
how good the guess is.

Our description of our process assumes a real laboratory environment, up until
Section 3.5, at which point we will provide details for our simulation. We will first
start by describing in Section 3.1 the optical setup that will enable our process.
We will then discuss in Section 3.2 the mathematics that describe this setup and
use it in Section 3.3 to motivate the decisions we made in creating our process.
Afterwards, we will explicitly describe the procedure for our process in Section 3.4
and lastly detail the simulation process in Section 3.5.
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SLM Object

Camera Collimated
light source

Figure 3.1: This is an illustration of our optical setup, as adapted from our submission to
the cosi conference 2015.[19] A collimated quasi-monochromatic light source is sent onto
a spatial light modulator (slm). The surface of the slm is imaged on the object using a 4f
relay and the light is focused on the camera with a third lens. The phase pattern on the
slm is optimized in order to compensate (conjugate) the object phase.

3.1 Optical Setup

The optical principle of this method is depicted in Figure 3.1. We start by sending
a collimated beam of monochromatic light onto a phase-only spatial light modu-
lator (slm). The slm will allow us to pattern our incoming illumination. After the
slm, we send the patterned illumination into a 4f lens relay, which reproduces
the same illumination onto a plane displaced by four focal lengths. We then place
a slide with the object on the other end of the 4f lens relay. After the light passes
through the object, we send it into another lens placed a focal distance away, with
our camera at the opposite focus of this lens. In this setup, the light essentially gets
modified by the slm followed by the object, and then gets propagated through a
lens. If the slm pattern perfectly conjugates the object, then the light after trans-
mission through the slm and the object would have a flat wavefront. This light
would then focus through the lens into a single spot on the camera.

Note that the setup from the object plane to the camera is the same setup as
the setup for the Gerchberg–Saxton method. Since the camera can only measure
the intensity, it cannot directly give us information about the phase of the object.
Phase retrieval processes, a category to which our process belongs, are processes
designed to use this intensity image to help recover the phase of the object.

3.2 Wave-Optical Formulation of the Setup

First we note that the 4f system only contributes a constant phase di↵erence, as-
suming that the lenses are identical. This is because, notwithstanding constant
phase factors, each system of a propagation by f , a lens, and another propagation
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by f , combine into a Fourier transform. The composition of two Fourier trans-
forms simply negates the original field, which is essentially a constant phase factor
of ⇡. Disregarding this constant phase di↵erence, the 4f system leaves the field
unchanged, and we can treat the object and the slm as being on the same plane.

Let �A be the wave retardation, or phase, of the object, �
slm

be the phase of the
slm, and f be the focal length of the last lens. Then

tA = exp(�j�A), (3.1)

t
slm

= exp(�j�
slm

), (3.2)

and let

t(⇠ ,⌘) = tA(⇠ ,⌘)tslm(⇠ ,⌘), (3.3)

the combined transmittance of the slm and the object.
Then the complex light field at the camera, u(x,y), is described by

u(x,y) =
A
j�f

U

t(⇠ ,⌘)exp
"
�j 2⇡

�f
(⇠x + ⌘y)

#
d⇠ d⌘. (3.4)

Our setup allows us to adjust �
slm

and measure the intensity, I(x,y) = |u(x,y)|2.
In addition, we are able to remove the object and put in an empty slide, which we
will represent by t0(⇠ ,⌘) = exp(0) = 1. This is the di↵raction from an object with a
constant phase of zero.

3.2.1 Locations of di↵erent Fourier modes in the output image

For practical measurements, we need to determine the physical location that corre-
sponds to each Fourier mode exp(j(kxx+kyy)). Consider the diagram in Figure 3.2.
Let r refer to the 2D coordinate (x,y) in the camera plane. Light can be rewritten
as a superposition of plane waves that point at di↵erent directions. For the light
departing from the center of the lens arriving at location r, the ray has an angle of
✓ with respect to the normal. This means that

kr = k sin✓, (3.5)

k =
2⇡
�

(3.6)
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SLM Lens Camera

r

λr θ

f f

Figure 3.2: This diagram illustrates the scaling between the Fourier mode and the location
of the focused spot on the back focal plane of the lens. It shows both how kr = k sin✓
and kr = 2⇡/�r . The lines indicate wavefronts of constant phase and are separated by a
wavelength. �r is the distance between adjacent minimums of the slmmodulation, and it
is also equal to the distance on the slm between adjacent wavefronts of the light ray.

where kr is the component in the xy plane of the wave vector k. According to
the diagram, sin✓ = r/f , where r =

p
x2 + y2 and f is the focal length of the lens.

In addition, this light ray is the direction of the plane wave before the lens, so kr
also represents the wave number for the spatial oscillations in the slm plane. As
a result, kr = 2⇡/�r , where �r is the spatial wavelength in direction r in the slm
plane. This means that

kr =
2⇡r
�f

=
2⇡
�r

. (3.7)

The lowest-order integer Fourier mode on the slm plane1 would occur at a �r

equal to the size of the slm, and the finest Fourier mode on the slm would occur
when �r becomes the distance between slm pixels. To find the mapping between
a pixel in the camera image and the amplitude of a coe�cient of Fourier mode, we
would simply evaluate

r =
�f

�r
, (3.8)

1An integer Fourier mode on the slm refers to a mode that oscillates along the length of the slm
an integer number of times, or where kr = 2⇡n

L where L is the width of the slm and n is an integer.

24



CHAPTER 3. METHODOLOGY: OUR PHASE-RETRIEVAL PROCESS

plugging in the values for the lowest mode: the focal length for f , the slm width L

for �r , and the wavelength for �. This r would correspond to the distance between
two consecutive integer Fourier modes on the slm. This would be useful later on,
when we choose a basis that closely corresponds to the integer Fourier modes on
the slm.

3.3 Mathematical Overview of Wavefront Flattening

In this section we will provide a mathematical description of our problem and
the motivation behind our process. The explicit instructions, which will be stan-
dalone, will be described in Section 3.4.

We want to find �obj, the phase of the object. To do this, we can measure a
reference of a known phase and use it to measure the accuracy of our estimates.
Since we know the phase of the empty slide, we can use the empty slide as our
reference. We measure the reference by putting in the empty slide t0 and using
a constant default phase on the slm. Let L be the width of the slm, and assume
the slm is square. Our illumination after the slm would therefore be a square
function with width L and value 1 inside the square, which can also be written as

u
slm

(⇠ ,⌘) = rect
✓⇠
L
,
⌘

L

◆
. (3.9)

The complex light field at the camera is then described by

uref(x,y) =
A
j�f

U

|⇠ |,|⌘ |L/2
exp

"
�j 2⇡

�f
(⇠x + ⌘y)

#
d⇠ d⌘. (3.10)

This Fourier transform is simply

uref(x,y) = sinc
 
⇡L
�f

x,
⇡L
�f

y

!
. (3.11)

Let Iref(x,y) = |uref(x,y)|2. This is the intensity output that we observe at the
camera for this reference setup.

Now that we know what a reference setup looks like, we can reinsert the object
so that the phase of the object becomes �obj. If we can then find a slm phase, �

slm

,
so that the intensity output (I ) exactly resembles Iref, then we know that

t(⇠ ,⌘) = 1, (3.12)
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where t is the combined transmittance of the slm and the object, and we leave out
any constant phase factors. We can say t(⇠ ,⌘) = 1 because in our optical setup, the
flat wave with no phase variation is the unique field that can produce the inten-
sity output Iref. The reasoning is that a flat wave with no phase variation coming
from the slm will be Fourier transformed by the lens into a focus of a small fixed
size inversely proportional to the size of the slm aperture. Even though only the
intensity can be measured, the phase within the focus is known to be constant.
A perturbation in the input field with a size smaller than the slm will produce a
perturbation in the Fourier transform that is larger than the focus. On the other
hand, no perturbation to the input field can be larger than the slm, so therefore,
no modulations to the output field can be smaller than the focus. Hence, a plane
wave is the only field that can possibly produce a spot in the focal plane of the lens
as small as this focus. Iref is thus uniquely produced by a plane wave. If the field
is disturbed by the object, the only way to restore the plane wave is to compensate
the object by its conjugated phase function.

If we achieve t(⇠ ,⌘) = 1, then

1 = t(⇠ ,⌘) = t
slm

(⇠ ,⌘)tobj(⇠ ,⌘) (3.13)

= exp[�j(�
slm

(⇠ ,⌘) +�obj)]. (3.14)

This can be satisfied if

�
slm

(⇠ ,⌘) = ��obj(⇠ ,⌘), (3.15)

Therefore the correct �
slm

value is ��obj for flattening the wavefront, and once we
find it, we can simply negate the phase to image the object. For notation purposes,
we will use �

slm

to refer to the correct slm phase that flattens the wavefront and
�̂
slm

to refer to the final estimate of �
slm

that our algorithm can converge to.
To estimate the correct �

slm

value that makes the intensity output I resemble
Iref, we let �̂k(⇠ ,⌘) be the k-th estimate that we place on the slm, and Ik(x,y) be
the intensity output from setting the slm modulation to �̂k(⇠ ,⌘). As k gets large,
�̂k(⇠ ,⌘) converges to �̂

slm

(⇠ ,⌘), our final estimate. We then attempt to minimize
the error Ek , which we will define as how distant Ik is from Iref. Our error metric
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is the square of the Euclidean norm of the di↵erence,

Ek = kIk(x,y)� Iref(x,y)k22 (3.16)

=
U

|Ik(x,y)� Iref|2dxdy (3.17)

⇡
NxX

i=1

NyX

j=1

|Ik(xi ,yj )� Iref(xi ,yj )|2, (3.18)

where the xi ,yj values are pixels on a rectangular grid, and Nx and Ny are the
dimensions of the grid. Furthermore, Ek is an error value that we can compute
from real physical measurements.2 If Ek = 0, Ik = Iref, and as we just stated above,
this implies that �̂k = �

slm

= ��obj.
The error Ek gives us an approximation of the distance between uk and uref, and

we attempt to iteratively guess �̂k such that Ek decreases as k increases. The goal
is for �̂k to converge to �

slm

, up to a constant phase di↵erence.
We will now treat �̂k as a discrete function that takes on values for input from

{1, ...,Nx}⇥{1, ...,Ny}, giving us a search space of RNxNy . Since the search space has a
high number of dimensions, we can attempt to simplify this problem by searching
one dimension at a time. We define a set of images, M = {Vi},Vi 2 RNx,Ny , to be a
complete basis if the images in {Vi} are linearly independent and span(M ) = RNxNy .

Based on this notation, given a complete orthogonal basis M , we can represent
any image �̂k as a linear combination of basis elements. In other words, we can
create a coordinate system (a1, a2, ..., aNxNy

) made of the scalar coe�cients of each
basis element so that

�̂k =
X

Vi2M
aiVi . (3.19)

One di�culty is that the transformation from the input (object and slm) phase
� to the intensity output I is nonlinear. As a result, we cannot simply solve this
problem by separately minimizing Ek for every coe�cient ai and combining the
results. Instead, we need to incrementally combine the estimates of previous coef-
ficients when we optimize a new coe�cient, and we also need to carefully choose
the order in which we optimize the coe�cients. In addition, we must also readjust
2While the error metric we would actually want can be better represented by Eideal = k�slm �

�̂
slm

k, we use the di↵erence in intensity in our optimization process because intensity can be di-
rectly observed in real physical measurements, while � cannot.
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coe�cients that we have already optimized after optimizing other coe�cients. In-
tuitively, the coe�cients that yield the largest improvement in Ek should be the
ones optimized first, since these would bring us closest to our desired result. In
addition, not all basis elements should be necessary to express �

slm

to a reason-
able accuracy, so if we reduce the number of basis elements kept at the beginning,
we would greatly improve our performance.

To be able to select the right basis elements, we can choose a basis whose coef-
ficients can be approximated by the output image I0, which is the intensity output
of the object alone with no modulation from the slm. This intensity output is the
squared modulus of the Fourier transform of the object field uobj(⇠ ,⌘). Our basis,
however, needs to be a decomposition of the possible values of the phase, �(⇠ ,⌘),
rather than the field, u(⇠ ,⌘). We will show that these two are closely related: con-
sider a phase function � with relatively small variation,

�(⇠ ,⌘) = �0 + �(⇠ ,⌘);

u(⇠ ,⌘) = C exp(j�(⇠ ,⌘))

⇡ C + jC�(⇠ ,⌘),

where C is a complex number with modulus 1. So when the variation in phase
is small, the variation in the field is a constant phase shift times the variation in
phase. Therefore, for all Fourier modes other than the constant (k = 0) mode,
the magnitude of the Fourier transform of the field (u) is a good approximation
of the magnitude of the Fourier transform of the phase (�). While our phase is
not actually small, this argument gives us an approximation for the right basis
elements to use; later on in Section 4.3we will mention that our process is actually
extremely robust with regards to which exact basis elements are chosen.

This result means that we can use the information from the output image to es-
timate the magnitude of the values of the discrete Fourier transform of �

slm

. With
the correct scaling, each pixel in the output I(x,y) can bemapped to the magnitude
of the coe�cient of a basis element of the discrete Fourier transform, exp(jk⇠⇠) for
some k⇠ . The scaling factor is defined by the relationship r = kr�f

2⇡ (where kr refers
to the k⇠ we need and r refers to the location) derived in Section 3.2.1. To take
advantage of the fact that our output image encodes the amplitudes of the discrete
Fourier transform of �

slm

, we can choose a basis that closely resembles the dis-
crete Fourier transform, which is the discrete cosine transform (dct). We choose
the discrete cosine transform because the phase, �(⇠ ,⌘), is a real-valued function,
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and using this basis naturally causes the coe�cients of the cosine transform to also
be real. We would then choose our subset of basis elements by looking at which
pixels of the I(x,y) output have the largest values. For our procedure, we can limit
the optimization space to the set ofN basis elements that correspond to the bright-
est N pixels of the output.3 We can also arrange our process so that we estimate
the brightest of this set first and revisit them the greatest number of times, because
the largest coe�cients make the biggest di↵erence in reconstructing our image.

3.4 Instructions for Our Phase-Retrieval Process

In the previous section we just provided a roadmap for how we want to design
our process. In this section, we will provide the specific details for implementing
the process. We will estimate the object phase, �obj, by using the intensity im-
age, Ik(x,y), to help choose the slm modulation to be as close to ��obj as possible.
After the process converges, we would give the negated image of our slm guess,
��̂
slm

(⇠ ,⌘), to the end user as our estimate for the object phase. While a few de-
tails from the last section are repeated here, they are included for completeness so
that this procedure is standalone.

The first step is to replace the object with a transparent slide, place no mod-
ulation on the slm, and record the intensity pattern on the camera. Since we are
focusing flat light with a lens, the pattern should be simply a single bright spot
on the camera. This pattern serves as the reference pattern and is the Iref we de-
scribed above. After recording this reference pattern, we then insert the object
onto the slide and attempt to pattern the phase of the slm in such a way that it
compensates for the phase of the object. If the phase pattern on the slm is the
perfectly conjugated version of the sample phase, then the resulting light beam
after transmission through the slm and the object would be flat, and the reference
pattern would be recovered on the detector. Therefore our process now, with the
object in the slide, is to try to optimize the slm pattern so that the intensity output
reproduces the reference pattern. See Figure 3.3 for an illustration of our process.

The optimization of the slm phase is performed by decomposing the phase
pattern into basis functions and searching for the coe�cients that minimize the
di↵erence between the detected intensity and the reference pattern. The complete
basis decomposition that we use to optimize the phase image is the discrete cosine
3This is assuming each pixel is separated by the distance r as calculated from section 3.2.1. If

they are not separated by this exact amount, we would rescale the output image first.
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Difference
Blank SLM with no object

Fourier plane

Modulated object
Fourier plane

Modulated object with
one basis instance

Object phase
Object with only 3500

basis functions

Reconstruction with
9 passes, 3500 basis

(a) (b)

(d)(c)

(e)

(h)

(f)

Reconstruction after
3 passes, 80 basis
(g)

Figure 3.3: An illustration of the steps of our process, adapted from our cosi
submission.[19] (a) Phase of the object. The gray scale represents the phase retardation,
black being 0 rad and white being 1.7 rad. The image corresponds to the slm area (square),
which is illuminated with a uniform intensity. (b) Intensity detected on the camera from
a blank slm with no object. The scale has been adjusted to make the side lobes appear
clearly. This pattern is the reference intensity Iref. (c) Object phase modulated by one
instance of a cosine transform basis element. (d) Intensity detected on the camera with
the object in place and the modulation on the slm. (e) Intensity patterns from (b) and
(d) are subtracted. The optimization is performed on frame (e) and minimizes the norm.
(f) Object projected onto the corresponding 3,500 basis elements with the knowledge of
the true coe�cients. This represents the best possible reconstruction with 3,500 basis el-
ements and serves as a comparison standard. (g) Reconstructed object after performing 3
passes, optimizing the coe�cients of 20, 40, and then 80 basis elements. The correlation
of this reconstruction with the object is 0.879. (h) Reconstructed object after performing 9
passes, with each pass incrementally doubling the number of coe�cients optimized until
it iterates all 3,500 basis functions. The correlation with the object is 0.994.

transform (dct). The optimization procedure is represented in the pseudocode in
Algorithm 1.

1. We first place a constant modulation of zero phase on the slm, and record the
intensity output with only the object. We will refer to this intensity output
as I0. Since the field at the detector is a Fourier transform of the light field at
the object plane, we can use the intensity output to approximate the discrete
cosine spectrum of the phase image. This would work well for small-phased
objects, since di↵erences in field would approximate di↵erences in phase.
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Algorithm 1 Our Phase Retrieval Process
1: procedure OurPhaseRetrieval
2: N  6,500 basis elements
3: NPerCoe↵  33
4: NItersPerPass  20
5: NPass  9
6:
7: Place the object in the object plane.
8: slm The zero vector
9: I0 Camera reading
10: Ibasis estimate Rescale I0 to correspond to basis elements of �A.
11: BasisOrder Sort pixels in Ibasis estimate by brightness
12: CurrentGuessValues The zero vector
13:
14: for pass from 1 to NPass do
15: for i from 1 to NItersPerPass do
16: WhichCoe↵ BasisOrder[i]
17: CurrentCoe↵ CurrentGuessValues[WhichCoe↵]
18: GuessValues {CurrentCoe↵}[PickRandomValues(NPerCoe↵� 1)
19: BestValue minv2GuessValuesEk(v,CurrentGuessValues,WhichCoe↵)
20: CurrentGuessValues[WhichCoe↵] BestValue
21: end for
22: NItersPerPass min(N,2NItersPerPass)
23: end for
24:
25: return ReconstructImage(CurrentGuessValues)
26: end procedure
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2. We then pickN (which should be a number roughly between 1,000 to 6,5004,
depending on the desired final reconstruction quality) basis elements of the
discrete cosine transform by mapping pixels from the initial output image
I0 using the kx = 2⇡x/�f relationship derived in Section 3.2.1. We then take
the N basis elements corresponding to the brightest pixels in I0. The total
number of basis elements required to render the object phase perfectly is
equal to the number of pixel in the image, which in this case is 65,536 (256 ⇥
256), but a smaller subset of these basis elements can provide a satisfactory
result. The plan now is to progressively perform many iterations through all
the basis elements to estimate their coe�cients.

3. Sort the basis elements from the previous subset by order of brightness of the
corresponding region in I0. After determining the order, we perform multi-
ple “passes” of optimizing the coe�cients, with each pass iterating through
all the previously-optimized coe�cients and then adding more unoptimized
coe�cients. LetNi be the number of elements that pass i will iterate through.
We will start with N1 = 20, and after a pass we will double Ni , and then dou-
ble again every pass afterward, until Ni reaches N . Here is what each pass
consists of:

(a) For each basis element, we optimize the coe�cient by first choosing 33
values within a range dictated by the image resolution, i.e. from �⇡Nx to
⇡Nx,Nx being the width of the image in pixels. 32 of these 33 values are
chosen randomly, and the 33rd value is either 0 if it is the first pass that
optimizes this coe�cient, or the existing coe�cient produced from the
previous pass. For each value, c, we add the basis element multiplied
by this value onto the slm phase and measure the resulting intensity
pattern Ik . (k is just an integer iterator that for the sake of notation
distinguishes the current intensity from all other intensities recorded.)
We then calculate the Ek-error score of this basis value, as described in
the previous section (Section 3.3), by taking the Euclidean norm of the
di↵erence between Ik and Iref.

(b) Finally, we keep the c value that yields the lowest Ek as our coe�cient
for this basis element. For each subsequent coe�cient, the previous
coe�cients are kept constant and remain on the slm, so that the basis
elements build incrementally on each other.

4These numbers were chosen as a balance between image quality and runtime. See Section 4.1.
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(c) After optimizing the first Ni coe�cients, we obtain a reconstruction.
We call this operation a “pass”. A more accurate reconstruction can
be obtained by performing new passes using the same basis elements,
each time keeping the previously estimated coe�cients until they get
updated in the new pass. After a fixed number of passes have occurred,
set Ni+1 = 2Ni . If Ni+1 is larger than N , then we just set Ni+1 =N .

4. We repeat the above steps until Ni = N , at which point we perform a fixed
number of passes until the final reconstruction image, which is the negation
of the phase modulation values on the slm, is satisfactory. For our process,
we found that 9 passes were satisfactory.

After our process is completed, we report ��̂
slm

, or the negation of the last slm
modulation, as our resulting estimate of the phase image.

We will now argue that our process converges: after every time we perform
step 3b, Ek can never increase, because we are taking the minimum of a set of
values that includes the value that achieved the previous Ek . Since Ek is bounded
below by 0, the sequence {Ek} is a monotonically decreasing sequence with a lower
bound, implying that this sequence converges (although not necessarily to 0). Our
algorithm therefore converges, and we can stop at a point when Ek can no longer
changes significantly. If this problem is well-enough behaved and we use enough
basis elements, Ek hopefully converges to a value that is close to zero, so that our
reconstruction accurately represents our object phase.

3.5 Simulation and Verification of Our Process

Before trying this process in the laboratory, we performed simulations in matlab
to test and verify its e↵ectiveness. In this section we will precisely describe how
we simulated our process as described in Section 3.4 to test and verify its behavior.
The results of these simulations are described in Section 4.1. The actual laboratory
experiment is outside the scope of this thesis.

An example code for simulating the propagation of light through our system is
in Appendix A. It first simulates the propagation in the z direction by a distance
equal to the focal length. This propagation is performed using the beam propaga-
tion method (bpm)[20], which is a method that uses the slowly varying envelope
approximation to propagate the light by taking a Fourier transform, multiplying
by a propagation factor, and then taking an inverse Fourier transform. After the
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propagation, the code multiplies the field by a quadratic phase factor calculated
from the dimensions of the lens. After this phase factor, the code uses the bpm
again to propagate the light by a further focal length. While this code can be gen-
eralized to setups with arbitrary propagation distances and lens sizes, our setup
performs an exact Fourier transform, so we do not need the four Fourier trans-
forms performed in this code. So to reduce the computation time, we simply used
a single call to the matlab-provided fast Fourier transform (fft) in most of our
simulations. We found, by testing a few runs with both the simple fft and the
bpm, that the choice between the bpm code and the simple fftmakes a negligible
di↵erence in the output image.

We will first compute in Section 3.5.1 the locations in the camera output image
that correspond to each basis element in our optimization method, and then we
will in Section 3.5.2 compute the specific physical parameters our matlab fft
simulation would correspond to, so that we can accurately rescale the simulation
to match the parameters of light in our lab.

3.5.1 Mapping the intensity output to basis elements

We will use the mapping derived in Section 3.2.1 to derive the location in the
camera plane that describes the amplitude of each basis element. However, as
a word of caution, the mapping is an approximation of where everything ought
to be, as we are using a cosine basis rather than a Fourier basis, and our basis
decomposes the phase, or the argument of the complex number, instead of the
actual complex field. However, this approximation is good enough for deciding an
ordering of which basis elements to optimize first.

If the image output of the camera has a pixel separation of �, then we simply
need to scale the image down by a factor of r/� so that each pixel corresponds to a
discrete Fourier mode. Plugging in the values for r, we have that

Image scaling factor =
r
�
=

�f

Nx�slm�
, (3.20)

where �
slm

is the pixel separation of the slm. This scaling factor would map pixels
of the camera output to the exact cosine transform elements returned bymatlab’s
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discrete cosine transform (dct).5 In our simulations, we chose

Nx = 256,

� = 8 µm,

�
slm

= 8 µm,

� = 532 nm, and

f = 3 cm,

based on the physical dimensions of our lenses, slms, cameras, and lasers. This
choice also allows the scaling factor between the separation between the output
image pixels and the separation between discrete Fourier modes to be approxi-
mately one, which makes it easy for simulating the propagation. The actual values
in the lab do not need to strictly be these values, since the only step at which we
care about the scaling factor is the first time we choose ourN basis elements based
on the output image, and we can simply rescale this output image once to estimate
the magnitudes of our discrete cosine modes.

Lastly, because the discrete cosine transform only has positive frequencies, we
only needed the pixels in the lower-right quadrant of the propagated output image.
Therefore for this mapping step, we pre-processed the image by setting the pixels
in the upper-left, upper-right, and lower-left quadrants to zero, so that we only
pick basis elements from the lower-right quadrant.

3.5.2 Propagating the Light through the System

We need a subroutine to simulate the propagation of light through the system so
that we can simulate the intensity recorded by the camera. This simulation would
be used whenever we need to record a camera image, such as when we record Iref,
or when we record Ik in order to compute Ek .

For coherent light, we simply compute the propagation by directly Fourier
transforming the input field.

To decrease the boundary e↵ects, we can increase the computational window
size to beyond that of the slm size, but our simulations show that this does not
a↵ect the convergence of the algorithm or the accuracy of the reconstructions. We
have omitted the results for the larger computational size due to the larger run-
times needed to compute every reconstruction.
5Each reconstruction uses the exact command, Image = idct2(ifftshift(Coefficients)).
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The fast Fourier transform (fft) in matlab returns results such that �k = 2⇡
N�x

in the resulting matrix, where �k is the separation between adjacent values in the
discrete Fourier matrix, and�x is the spatial separation between adjacent values in
the discrete input matrix. For an initial slm with a distance of 8microns between
pixels, a camera with the same pixel size, a focal length of 3 cm, and light at 532
nm, the Fourier transform inmatlab of a 256-pixel-wide image would correspond
one-to-one between the pixels of the slm and the pixels of the camera, as we listed
at the end of the previous section (Section 3.5.1). The matlab Fourier transform
on a 1024-pixel-wide slm, which we actually have in the lab but will not use in
our simulations, would correspond to a focal length of 12 cm. So once we move
to the lab, since our slm is bigger, we will be able to use lenses with longer focal
lengths to confirm the results of the our simulations.

For incoherent or partially coherent light, we would generate the beam by first
simulating light coming from point sources randomly chosen inside an aperture.
We then Fourier transform this light, as if it were emitted onto a lens, and then
use this Fourier transform as the illumination for our system. After propagating
through the system, we would store the final intensity. Finally, we would sum up
the intensities from each point source. Since each source emits coherent light, this
is equivalent to summing up intensity outputs of coherent illuminations that are
uncorrelated from each other. In our simulation, a tiny aperture corresponds to
relatively coherent light, and a large aperture corresponds to a relatively incoher-
ent light. Similar to the analysis in Section 3.2.1, if the aperture radius is rsource,
then

�speckle =
�f

rsource
. (3.21)

This �speckle is the average separation between neighboring speckle peaks of the
illumination right before the image plane. The correlation length, rspeckle, would
correspond to the separation between the peak and the zero of the autocorrelation
of the speckle distribution, which is approximately half the average separation be-
tween neighboring speckle peaks. We will use this approximation as the definition
of rspeckle:

rspeckle =
1
2
�speckle (3.22)

=
�f

2rsource
. (3.23)
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We treat this value, rspeckle, as the speckle radius, which is the important distance
in making our measurements. We define the speckle wave number, kspeckle, as
2⇡/rspeckle = 4⇡/�speckle. These incoherent simulations are computed not only for a
proof of concept, but also for a comparison with the Gerchberg–Saxton algorithm.

The point sources were chosen randomly. However, we noticed that for most
simulations of 1,000 point sources or under, the fluctuations in the resulting illu-
mination far exceed the fluctuations within the possible coe�cients of one basis
element, making it extremely di�cult to compute useful Ek values to minimize.
In the real experiment there will be a stable source of light, but in simulations we
have to somehow maintain consistency for the propagations within the optimiza-
tion. To do this, we randomize the locations of the point sources once, and then
we reuse the same selection every time we need to propagate the light. As long
as the point sources are dense enough, this simulation still accurately simulates
incoherent propagation because we are still only adding up intensities.
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Chapter 4

Simulation Results with Coherent
Illumination

In this chapter we will discuss the results from simulating our process under co-
herent light. We will first present in Section 4.1 the reconstructions of various
sample images and a discussion of the types of images that converge rapidly to a
good quality. The reconstructions are in Table 4.1. We will also include a com-
parison against a modified version of our process with only one pass through all
the basis elements in order to illustrate that it was necessary to perform multiple
passes. We found that the one-pass runs peaked at 98% correlation, while the nor-
mal runs using our process could easily exceed 99% correlation as we increase the
number of basis elements allotted.

After this section, we will analyze the runtime and convergence of the process
in Section 4.2. We found that during each pass, the first half of the basis elements
are necessary in order to improve upon the previous pass, but as we would expect,
most of the improvement comes from the new basis elements added to the pass.
Finally, we will discuss the errors and robustness of our algorithm in Section 4.3.
We found that our algorithm very extremely robust to the exact basis elements
chosen, the ordering of the basis elements, as well as the number of values chosen
per coe�cient.
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CHAPTER 4. SIMULATION RESULTS WITH COHERENT ILLUMINATION

4.1 Verification Metric and Results for Our Process

To verify the performance of our process, we used the correlation between the final
guess and the original object. In addition to the correlation, we will also present
the final 256⇥256 reconstructed images so that we can judge them by eye, as it is
possible for images to have high correlations but miss obvious features such as the
eyes and themouth of a smiley face. Wewill present discussion on the e↵ectiveness
of our process with respect to the maximum number of basis elements allotted for
a run. Afterwards, we will discuss and show that it was actually necessary for us
to perform 9 passes by showing the results if we had only done one pass for each
reconstruction. In addition, we will analyze the runtime data, and analyze the
tradeo↵ between runtime and correlation.

In Table 4.1we have a comparison of a few images and the best reconstructions
we have achieved on these images, with each run limiting itself to iterate over 20,
75, 300, 1,000, 3,500, or 6,500 basis elements. Realistically, the number of basis
elements needed for a reasonably clear image is somewhere between 1,000 and
3,500, as we can see from Table 4.1.

4.1.1 Reconstructed Images

Table 4.1 contains the final reconstructions using our process for nine di↵erent
images, using six di↵erent numbers (N ) of basis elements. In each original image,
the color white indicates a phase of 1.82 (or 1.7 for Image I) and the color black
indicates a phase of 0. The colors in our reconstruction images are scaled automat-
ically so that we can visualize the range of phase values. Even though the scales
are di↵erent, they are still very close to the scale of the original.

Each run uses 9 passes. The first pass goes through the coe�cients of the first
20 basis elements, the next goes through the coe�cients of the first 40, doubling
with each pass until it reaches the total number of basis elements we allot. The
ninth pass always does all of the allotted coe�cients. So the N = 20 runs do a
total of 180 iterations, where each “iteration” refers to guessing 33 possible val-
ues (chosen using stratified random sampling) for a basis element and choosing
the one that gives the lowest Ek . The N = 75, N = 300, N = 1,000, N = 3,500,
and N = 6,500 runs do a total of 585, 1,800, 4,260, 8,600, and 11,600 iterations,
respectively.

Images A, C, F, H, and I explore the use of relatively narrow and long features,
such as with the letter ‘A’, a very thin curve, the letter ‘F’, the phrase “It’s not about
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you.” printed in a smaller font, or the mouth of a smiley face. Images B, D, and
G explore the use of various rounded features, and Images E and I explore the use
of square features. Images B, H, and I explore the use of complex multi-layered
features. In images with rounded features (B, D, and G), 1,000 basis elements
seem su�cient to produce a good, clear image, while in images with more square
elements, the edges do not become clear until 3,500 basis elements. Lastly, most
of these images need about 6,500 basis elements for the background to be almost
completely smooth as well. So if only the content is important, it would su�ce
to use only 1,000 to 3,500 basis elements, which is 1.5% to 5.3% of the number of
independent dimensions,1 while if the background needs to be clear too, we would
recommend using 6,500 basis elements, or 9.9% of the number of independent
dimensions. These percentages are all under 10%, which means that our process
is able to compress most of the information about the image into under 10% of the
basis elements.

To check that it was actually necessary to perform multiple passes, we reran
the algorithm doing only one pass in each run. The number of iterations in each
run is now exactly equal to the number of basis elements allowed. Table 4.2 shows
the results of these runs. While the general shapes are relatively good, both the
foreground objects and the background are not as smooth as those produced using
multiple passes. This di↵erence is most pronounced in the runs with large N val-
ues, such asN = 1,000, N = 3,500, andN = 6,500. This is because there is only one
chance to guess the values of the most important basis elements, and after later
values are guessed, which would likely move the minimum for the first few basis
elements, the algorithm never goes back to correct the earlier values, resulting in
small artificial patterns appearing on the image. We will explain this e↵ect further
in the next section (Section 4.1.2), where we present correlation values.

1The image has 65,536 pixels total, corresponding to 65,536 independent dimensions.
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Reconstructions using Various Numbers of Basis Elements (N ),
Normal Procedure using 9 Passes

N 20 75 300 1,000 3,500 6,500 Original

Image A:
Letter A

Image B:
Bullseye

Image C:
Curve

Image D:
Rounded
Rectangle

Image E:
Square

Image F:
Letter F

Image G:
Circle

Image H:
Text

Image I:
Smiley
Face

Table 4.1: Each image is 256 pixels wide and 256 pixels tall. Each run uses 9 passes, and
each pass checks 33 values per coe�cient.

41



CHAPTER 4. SIMULATION RESULTS WITH COHERENT ILLUMINATION

Reconstructions using Only One Pass
N 20 75 300 1,000 3,500 6,500 Original

Image A:
Letter A

Image B:
Bullseye

Image C:
Curve

Image D:
Rounded
Rectangle

Image E:
Square

Image F:
Letter F

Image G:
Circle

Image H:
Text

Image I:
Smiley
Face

Table 4.2: Each image is 256 pixels wide and 256 pixels tall. Each run uses 1 pass and
checks 33 values per coe�cient. This table shows that one pass is not su�cient to produce
the quality of images in Table 4.1.
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4.1.2 Correlation Values

To quantitatively assess our reconstructions, we calculated a correlation coe�cient
between the original image and each reconstruction. Figure 4.1a shows the corre-
lation values for each run, using 9 passes. Images with thick features tend to have
higher correlations than images with thin features. Reconstructions of Images C
and H have lower correlations because they were made of only thin features, and
our process appears to converge slower for thin features. In addition, the corre-
lation function is more strict for thin features, since these features have to be in
the exact right locations to improve the correlation. In all images, increasing the
number of basis elements increases the final correlation, showing that our recon-
struction does not deteriorate as we add more basis elements. The peak values are
around 99.7% for most images (at 6,500 basis elements), although Images C and H
have peak values of 85.8% and 98.4%, respectively.

To confirm that we actually needed to perform 9 passes instead of just perform-
ing a single pass through all the coe�cients, we calculated the correlations from
runs that only permitted one pass. Figure 4.1b shows these values, and they are
roughly 2% lower than those of the normal runs, located in Figure 4.1a. These
values show that by restricting to only one pass there is an artificial peak of about
98% correlation. This peak is likely here because the error in the first few basis
elements can never get corrected. In other words, after guesses for later elements
move the minimum, we never return to the first few basis elements to readjust our
estimate. In addition, by only ever guessing 33 values for each of the first few basis
elements, the likelihood of getting a very accurate result is low. In fact, the corre-
lation drops by almost a constant 2% for all runs, regardless of the number of basis
elements used. The correlation for Image G does not drop by a full 2% because it is
a single round feature, which means that the first basis elements may not need as
much re-optimization after the first pass. This peak at about 98% reduces the ef-
fectiveness of the procedure, because the peak implies that increasing the number
of basis elements allotted can no longer do much to improve the reconstructions.
This is the reason our standard procedure uses multiple (9) passes.
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Figure 4.1: These plots show the correlations between each reconstruction and the original
image, with 20 to 6,500 basis elements allotted per run. This side-by-side comparison
between normal (9 pass) and one-pass runs shows that our normal procedure is better
than a procedure with only one pass. (a) illustrates the results from normal runs using 9
passes. The peaks are all at 6,500 basis elements, with correlations of 99.5% to 99.8%, with
the exceptions of Image C and Image H, which were especially di�cult to reconstruct.
(b) illustrates the results from using only one run through all 6,500 basis elements. All
the correlations except for Image G are about 2% lower than those of the normal run.
As a result, there is an artificial peak at 98% correlation, which therefore reduces the
e↵ectiveness of using large numbers of basis elements.
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4.2 RuntimeAnalysis andCorrelation as a function of
Iterations Performed

The runtime for the final process in the laboratory, which will take advantage of
the slm and the real-life optical system, will be proportional to the number of
modulations we send to the slm: we would perform a discrete cosine transform
(takes O(NxNy log(NxNy)) time) for each guess, and then send it to the slm (whose
time depends on the slm response rate), capture an image with the camera, and
then calculate the error Ek (takes O(NxNy) time). After we perform the 17 to 33
guesses, we make a constant number of steps to store the answer, and then we
continue to the next iteration. We do not count the time from simulating the prop-
agation of light through the optical system because the real-life optical system is
essentially instantaneous for lenses with focal lengths that fit in a lab.

The total number of iterations is 11,600 for 6,500 basis elements. With 33
guesses for each iteration, this adds up to 383,000 slm modulations. If we simply
save the Ek from the last iteration as the Ek associated with the value that was
already there, then we would only need to perform 32 guesses for each iteration,
or 371,000 slmmodulations.

Since we designed our process to double the number of iterations with each
consecutive pass, an advantage is that it forms a geometric series, which when
summed up is linear in terms of the number of basis elements allotted. To be pre-
cise, if the last c passes at the end proceed with the full number of coe�cients, then
our process would perform less than (c + 1)N iterations,2 where N is the number
of basis elements allotted. If we allow the process to run for p passes total, then

c = (p � blog2(N/20)c). (4.1)

This allows for a very nice rule of thumb that results in a very good reconstruc-
tion (as shown above) as well as a linear runtime: simply set the number of passes
to blog2(N/10)c, which will guarantee our algorithm to perform at most 2N itera-
tions.

Figure 4.2 illustrates how the correlation relates to the number of slm modu-
lations as the run progresses, for a few representative runs. The curves take on a
similar shape for all 54 runs. With each pass after the first pass, there is a shal-
2The +1 is from the sum of a geometric series with a ratio of r = 2 and a largest term under N/2.

This sum is less than N .
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low but rising slope for the first half while it is iterating the basis elements that
have already been iterated. Then there is a sharp rise for the second half when it
iterates through the new basis elements. It is also important that the curve in the
second half of each pass is concave down, indicating that the basis that are iterated
earlier are more important under our verification metric than those iterated later,
and thus make a bigger di↵erence in the correlation. This confirms that it was a
good idea to choose the order of the basis elements based on the first output image
with just the object.
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Figure 4.2: This plot shows the relationship between the correlations of each reconstruc-
tion with the original image versus the number of passes completed so far. The boundaries
between consecutive passes are marked with dotted vertical lines. The black, dark silver,
and gray lines show the correlation values for the run using 6,500 basis elements to recon-
struct Image I, Image A, and Image C, respectively. The number of slmmodulations is 33
times the number of iterations.
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4.3 Error and Robustness Analysis

Based on a few tests with our simulations, we found that our process is very robust
to any errors or aberrations in the optical system, as long as that output is con-
sistent. In other words, it only needs the lens setup to be consistent, not accurate.
We found that if we perturb the simulation for the propagation a little bit, either
by adding in randomness in the source illumination or by rescaling the camera
output, we still converge to the best reconstruction. In fact, neither the choice of
basis nor the ordering of the basis elements need to be perfect, as long as it roughly
guesses the lower-frequency basis elements first. For example, we performed a few
runs where we just selected the basis elements from Iref, the output image of no
object and no slm (basically just the sinc() function), and we found that the final
reconstructions were of similar quality to the same runs that used I0, the output
image of the object with no slmmodulation, to pick the basis elements.

In addition, there is also robustness in the values chosen for each coe�cient:
the values are randomized for each iteration and chosen over a large range, and
as long as there are enough values guessed, the algorithm eventually finds an im-
age that closely resembles the original. We found that decreasing the number of
values per iteration from 33 to 17 or 9 also made very little impact on the final
reconstruction quality.

Overall, we found that our process works quite well for coherent light, for a
wide range of images. Only about 5 to 10 percent of the basis elements are needed
to reconstruct a good-quality image, and this reconstruction takes about 5,100 to
11,600 iterations, or 163,000 to 371,000 slm modulations. Each of these recon-
structions reliably converges to over 99% correlation.
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Simulation Results with Incoherent
Illumination

In this chapter we will discuss the results from simulating our process under inco-
herent light. We will first explain in Section 5.1 how we simulated the incoherent
light, followed by a table of the results in Figure 5.1 showing that even as the light
gets less coherent, the quality of the reconstructions remain the same.

We will then in Section 5.2 compare our process against the Gerchberg–Saxton
algorithm. Figure 5.2 on page 53 compares the behavior of our process against
the Gerchberg–Saxton algorithm, and it shows that our process significantly out-
performs the Gerchberg–Saxton under partially coherent light. We found that
the reconstructions from the Gerchberg–Saxton decrease in quality for incoherent
source apertures with diameters greater than 30 µm, while our process continues
to perform well for source apertures with diameters up to 150 µm.

Lastly, we will present in Section 5.3 some error analysis, mentioning that it
was di�cult to simulate incoherent propagation and that very large source aper-
tures with diameters above 400 µm are untrustworthy.
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5.1 Incoherent Light

To test our method on incoherent light, we alter our optical system in the following
way:

1. Instead of a flat illumination, generate the illumination by randomly choos-
ing a pixel (p) in a source aperture (E) with diameter (d) in the Fourier plane.
Then take the Fourier transform of this pixel. Call this illumination uill.

2. Continue the simulation as usual, multiplying uill by the object image and the
slm image, and then taking the Fourier transform again to get the wavefield
at the output plane.

3. Calculate the intensity (square of the modulus) of the image at the output
plane. Call this intensity Ix.

4. Repeat the above steps, setting x to a di↵erent pixel each time, until illumi-
nation from all the pixels in the aperture E have been simulated. Keep a run-
ning sum of output intensities Ip, and return the output intensity, I =

P
p2E Ip.

This is equivalent to simulating bright incoherent illumination from an aper-
ture of diameter d, propagating the light from each illumination point separately,
and then summing up the resulting fields from each point. Since there is no cor-
relation between di↵erent illumination points, the final intensity is just the sum
of the intensities from each point. Notice that in the case of d = 1 pixel, the illu-
mination is flat, and we reproduce the same results as coherent light. However, as
d increases, this is equivalent to simulating incoherent illumination from a larger
aperture, and it simulates higher and higher incoherence across the illumination.
The light would produce speckles of a smaller size as the source aperture gets
larger.

Figure 5.1 illustrates the results of various incoherent simulations on Image I.
Because the simulations are lengthy, we reduced the number of guesses per iter-
ation from 33 to 17, and we only performed this simulation on Image I, which
encompasses all the features in the other images (square, round, thin, and fat). As
we can see, the di↵erence in appearance between the coherent reconstruction and
the incoherent reconstructions is far less noticeable than the di↵erence between
any of these reconstructions and the original. In other words, incoherence does
not noticeably decrease the accuracy of the reconstructions.
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To explore this further, we list the correlation values between each reconstruc-
tion and the original in Table 5.1. As we can see, most of the incoherent recon-
structions actually exceed the coherent reconstruction in correlation. Therefore
our process can be expected to work equally well under the conditions of incoher-
ence in these simulations.

To better understand the size of these aperture sizes, we have listed the spa-
tial wave numbers of the speckles ksp in the last column of Table 5.1. We can see
that the correlation does not decrease even when ksp gets above 50,000 m�1 (As
in, the speckles get smaller than a width of about 16 pixels wide, since higher k
implies smaller speckle size), which is about the spatial frequency of many of the
features in the smiley face image. We have so far only presented reconstructions
for light that comes from incoherent source diameters of up to 150 µm. Additional
simulations actually show that our method continues to produce reconstructions
with over 99% correlation for source diameters up to 20,000 µm. However, we
have omitted these additional simulations because the results become untrustwor-
thy for incoherent source diameters at 400 µm or above, and we will discuss this
further in Section 5.3.

Reconstructions of Image I using Incoherent Light
from Source Apertures with Di↵erent Diameters

(a) Coherent (b) 16 µm (c) 48 µm (d) 152 µm (e) Original

Figure 5.1: Each run uses 3,500 basis elements and 9 passes, and each pass checks 17
values per coe�cient. Each image was optimized using a di↵erent source aperture size,
and the values below the images are the diameters of the source aperture. A larger aperture
indicates light that is more incoherent and speckles of a smaller size. The purpose of this
figure is to show that our reconstructions do not deteriorate as light gets more incoherent,
and as we can see, the reconstructions look almost identical to each other.
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Correlation Values for Image I Reconstructions using Incoherent Light
Source Diameter (µm) Speckle Wave Number (m�1) Correlation

0 0 0.993
8 3,100 0.994

16 6,300 0.994
24 9,400 0.994
32 12,600 0.994
40 15,700 0.994
48 18,800 0.994
72 28,300 0.994

152 59,700 0.994

Table 5.1: This table lists the correlations of di↵erent image reconstructions of the smiley
face using incoherent light. The width of the slm would correspond to a speckle spatial
frequency of about 3,000 m�1, and a spatial frequency of 60,000 m�1 corresponds to a
speckle radius of about 13 pixels in the smiley-face image.

5.2 Comparison ofOur Process against theGerchberg–
Saxton

We simulated the Gerchberg–Saxton algorithm using the instructions and improve-
ments specified in [15]. We used a spatially-filtered intensity image of the slm as
the input and an intensity image of the light after propagation through the optical
system as the output. For this output image, we propagated it under both coher-
ent light and partially-coherent light. The partially-coherent light was simulated
using a source aperture of point sources feeding into a lens with a focal length of
10 cm placed before the slm. The phase sample was Image F, which is the letter
F, as it is the image that is easiest for the Gerchberg–Saxton to converge while still
allowing us to recognize the distinctive features of this constant-thickness image.
In this setup, the Gerchberg–Saxton converges for source apertures with diameters
below 30 µm and begins to fail for those with diameters above. At around 45 µm,
the correlation of the reconstruction is close to zero. This diameter corresponds to
a speckle radius around that of the slm width, which is 1,024 µm in these simu-
lations. This makes sense because the input intensity image is just a flat image of
the slm, and the slm is the most significant object in the image. As the speckles
get smaller than this slm, the phases within the slm become uncorrelated and
di�cult to estimate.

However, our process does not depend on the ability to know the exact phase
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of the light; it simply measures the flatness of the combined wave retardation be-
tween the slm and the object. This means that it is expected to converge under
incoherent light, too. We re-simulated our process with the exact same configura-
tions and images as the Gerchberg–Saxton configurations. Note that these config-
urations are di↵erent from those in Section 5.1, hence our values are not the results
from Table 5.1. We have placed recorded the numerical values of our results from
these runs in Table B.1 in Appendix B. Our process consistently converged to cor-
relations above 99%, even for source apertures of diameters as high as 20,000 µm.
The results of the comparison between our process and the Gerchberg–Saxton al-
gorithm for source aperture diameters of up to 50 µm are shown in Figure 5.2,
which combines the raw data from Table B.1 with the results of the Gerchberg–
Saxton algorithm.

As we can see, our process performs better for light of lower coherence. It is
therefore a potential method for phase retrieval under incoherent light. In fact,
the high correlation remains even for light with a speckle size smaller than most
features in the object, meaning that it does not need coherence in any part of the
object.
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Figure 5.2: This plot compares the behavior between our process and the Gerchberg–
Saxton algorithm. The SpeckleWave Number is 2⇡ divided by the distance between speck-
les. The propagation used for the input to output image in the GS algorithm uses a lens
with a focal length of 10 cm, and the original image is a letter F with height 600 µm. The
slm is 1,024 µm wide, which corresponds to a wave number of 6,000 m�1. For this com-
parison, the same exact image, slm size, and lens focal length are used for the propagation
in our process. In addition, we limit each run to 800 basis elements and 7 passes, and each
pass guesses 17 values per coe�cient. These settings were chosen to reduce the runtime,
since simulations for incoherent light are lengthy.
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5.3 Error and Robustness Analysis

While our algorithm can tolerate inaccuracies in the optical system and the values
guessed, we found that our algorithm is extremely sensitive to any inconsistency
in the simulation of the optical propagation. This is because on each pass, the
robustness depends on the ability for the old best value to be better than all the
worse values again. In addition, the Ek’s are quite close to each other in value for
most of the coe�cients guessed, implying that small inconsistencies in the optical
system dominate the di↵erence between Ek values. If the optical system is slightly
inconsistent between two identical simulations, then some other value could by
chance produce a lower Ek than the old best value, and so the true Ek (of a correct
propagation) could actually increase after this iteration. As a result, the true Ek’s
no longer form a monotonically-decreasing sequence, and our algorithm would
fail to converge. We expect this drawback to not be a problem in the laboratory
because the light would have enough photons so that these fluctuations average
out and become insignificant.

To overcome this drawback in our simulations, we deterministically chose the
random point sources within the source aperture before each run and used these
point sources for all propagations during the run. This allows each propagation to
still be incoherent, and it enables the propagations to be consistent in their errors.

In addition, as we discussed in Section 5.1, we omitted the results for simu-
lations of incoherent light coming from source apertures that have a diameter of
400 µm or above. In order for our simulations to finish in a reasonable amount
of time, we used only 25 to 100 point sources from the source aperture for each
call to our propagation algorithm. Consider the camera output images from Fig-
ure 5.3 for di↵erent incoherent source aperture diameters. The resulting inten-
sity from each point source correspond to a bright spot on the camera where the
point source was located, since both the source aperture and the camera are at the
Fourier plane of the image. When the source aperture diameter is small, the cam-
era outputs show the combined intensities from these point sources overlapping
with each other. This means that we see the e↵ects of incoherent light, which is that
the intensities add without any of the interference cross-terms. However, as the
source aperture diameter get larger, these point sources get spread out, and there
is less overlapping intensity between them. At a diameter of 400 µm, the regions
of illumination from the point sources almost do not overlap, and at 1000 µm,
the regions are almost completely separated. When the illumination regions from
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the point sources are all separated, there is very little summation of intensities
at most pixels; instead, each point source has its own region of illumination. So
even though our process converges well for illumination from these large source
apertures, the results of these simulations would be untrustworthy because our al-
gorithm would be able optimize on the undisturbed regions of illumination from
each point source, without any of the e↵ects of incoherence. However, this is not a
very bad limitation of our simulations, because 400 µm is well beyond the amount
of incoherence we are interested in. This source aperture diameter corresponds
to a speckle size of under 5 pixels, or 40 µm, which is already smaller than most
features in our object. In addition, as we will saw in Section 5.2, the Gerchberg–
Saxton fails at source aperture diameters that are less than 40 µm, which is far
smaller than 400 µm.

Camera-Plane Images using Incoherent Light from
Source Apertures with Di↵erent Diameters

(a) Coherent (b) 200 µm (c) 400 µm (d) 1000 µm

Figure 5.3: This is a side by side comparison of the camera outputs from our propagation
simulation for an image with a slm that is 1,024 µm wide with a letter F phase image that
is 600 µm tall. These illustrations show that we may not be able to trust the results of our
simulations at 400 µm and beyond.

Overall, even though there are many drawbacks with our simulation method
for incoherent light, we expect that these drawbacks exist only in simulation and
will not be a problem when we test this process in the laboratory. Our simulations
were reliable for the region over whichwe compared against the Gerchberg–Saxton
algorithm, and we conclude based on our results from Figure 5.2 on page 53 that
our algorithm performs better than the Gerchberg–Saxton algorithm for light with
incoherence.
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Conclusion

We have introduced the basics of Fourier optics and phase retrieval, detailed the
setup and implementation of our phase-retrieval process, simulated our process
with coherent light, and simulated our process with incoherent light.

We found that our method of phase retrieval by using the slm to conjugate the
wave retardation of the object can reconstruct images reasonably well using both
coherent and incoherent light without any prior knowledge regarding the phase
sample. Most reconstructions produced over 99% correlation using less than 10%
of the degrees of freedom (6,500 basis elements for 65,536 pixels). The perfor-
mance under incoherent light surpasses that of the Gerchberg–Saxton algorithm,
which does not converge well for incoherent light. Our method could therefore be
useful as a method of direct phase imaging under incoherent light.

However, the success of this method has yet to be demonstrated in the labora-
tory, and the large runtime of this relatively brute-force method can potentially be
a concern, depending on the speed at which slms can change their modulation.
In the current configurations, we would need a slm that can change ten thousand
times per second coupled with a camera that can take ten thousand pictures per
second to produce a 256⇥256 reconstruction within 30 seconds. Our method is
a very brute-force method that, as of now, only uses aggregate information about
the whole output image and does not actively take advantage of any spatial infor-
mation related to specific regions or pixels in the output image. We suspect that
smarter methods that actively take advantage of spatial information can converge
much faster. Possible methods to try include using a wavelet basis instead of the
cosine transform basis or simply choosing the slmmodulation based on the actual
pixel-by-pixel information (as opposed to Euclidean norm) from the output. In ad-
dition, there now exist large computer-vision databases consisting of hundreds of

56



CHAPTER 6. CONCLUSION

millions of existing images, and algorithms for processing big data are improving.
As a result, there can potentially be algorithms yet to be discovered that could in
real-time take advantage of statistics from existing similar images in the database
as the reconstruction is converging.

We chose to use this brute-force method because it has a large convergence
basin and is likely to converge for any initial image. It does not depend on the
reliability of the first few iterations or the initial conditions, because it builds the
image from scratch. As a result, this method was a suitable proof of concept for
the idea of phase retrieval by using the slm to flatten the wavefront, and we have
successfully shown via simulations that it converges for most phase objects under
both coherent and incoherent light.

The most immediate next step for this phase retrieval algorithm would be to
test it in the laboratory under both incoherent and coherent light and produce
results for images of di↵erent types. Once this brute-force algorithm has been
shown to work, we can optimize wavefront flattening to become faster and more
e�cient at direct phase imaging under incoherent light.
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Code

Here is an example matlab code, mostly written by Alexandre Goy, containing
the beam propagation method,[20] the quadratic phase factor from the lens, and
incoherent illumination. This code was used to produce the target image for both
the Gerchberg–Saxton algorithm and for our process (when reconstructing the let-
ter F) under incoherent light.

clear all;

close all;

Nx = 256;
Ny = 256;

slm_pixel_size = 8e-6;
dx = slm_pixel_size;

dy = dx;

Lx = Nx*dx;

Ly = Ny*dy;

dkx =2*pi/Lx;
dky =2*pi/Ly;

x = (-Nx/2+1:Nx/2)*dx;
y = (-Ny/2+1:Ny/2)*dy;
kx = (-Nx/2:Nx/2-1)*dkx;
ky = (-Ny/2:Ny/2-1)*dky;
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[X, Y] = meshgrid(x, y);

R2 = X.^2 + Y.^2;
R = sqrt(R2);
[Kx, Ky] = meshgrid(kx, ky);

K2 = Kx.^2 + Ky.^2;
K = sqrt(K2);

n0 = 1.0;
lambda0 = 532e-9;
k0 = 2*pi/lambda0;
k = n0*k0;

lens_focal_length = 100e-3;
lens_phase = exp(-1j * k * (lens_focal_length - sqrt( ...

lens_focal_length^2 + R2)));

% Generate object

object_pattern = double(imread(’letter256.png’));
object_pattern = object_pattern-min(object_pattern(:));

object_pattern = object_pattern/max(object_pattern(:));

% Spatial filter the object so that it does not hit the edge when

% propagating

filter_bandwidth = 0.5*k*sin(atan(Lx/(2*lens_focal_length)));
spatial_filter = exp(-(K2/filter_bandwidth^2));
object_pattern_filtered = ifft2(fft2(object_pattern).*fftshift( ...

spatial_filter));

object_phase_mod = pi/2;
object = exp(1j*object_phase_mod*object_pattern_filtered);

% Use the focal length as the propagation distance

propagation_operator = fftshift(exp(1j*(k - sqrt(k^2 - Kx.^2 ...

59



APPENDIX A. CODE

- Ky.^2))*lens_focal_length));

source_radius = 0.08e-3;
% Radius of the incoherent source in therm of the spatial

% frequency of the speckle

source_frequency_radius = k*sin(atan(source_radius ...

/lens_focal_length));

% Aperture within which the random point sources will be

% placed

source = double(K <= source_frequency_radius);

% We initialize the detected intensity to 0 and we will add

% the incoherent contribution

I_detection = zeros(Ny, Nx);

% Number of random sources

Nsource = 500;

I_illum = zeros(Ny, Nx);

I_illum(Ny/4+1:3*Ny/4, Nx/4+1:3*Nx/4) = 1;
I_illum = gaussian_filter(I_illum, 3);
A_illum= sqrt(I_illum);

for ind_source = 1:Nsource
% Randomly place a source at some distance from the axis

source_frequency_modulus = sqrt(rand(1))*source_frequency_radius;
azimuthal_angle_source = rand(1)*2*pi;
% Randomly pick an azimuthal angle for the source location

kxs = source_frequency_modulus*cos(azimuthal_angle_source);

kys = source_frequency_modulus*sin(azimuthal_angle_source);

% Uncomment these two lines to simulate coherent light.

% kxs = 0;
% kys = 0;

% Define the illumination as a function of the source location

% in the frequency domain

u_illum = A_illum.*exp(1j*(kxs*X + kys*Y));
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% u1 is the field right after the object

u1 = u_illum.*object;

% Propagate from the object to the lens

u_before_lens = ifft2(fft2(u1).*propagation_operator);
% Pass through the lens

u_after_lens = u_before_lens .* lens_phase;

% Propagate from the lens to the detector

u_detection = ifft2(fft2(u_after_lens).*propagation_operator);
% Add the intensity onto the detector

I_detection = I_detection + abs(u_detection).^2;

clf, subplot(1, 2, 1), imagesc(abs(u_before_lens)), axis equal, ...

colormap(gray), title(’Amplitude before the lens’);

subplot(1, 2, 2), imagesc(abs(u_detection(3*Ny/8+1:5*Ny/8, ...

3*Nx/8+1:5*Nx/8))), axis equal, colormap(gray), ...

title(’Amplitude in the detection plane (central portion)’);

drawnow;

end

figure, imagesc(source), axis equal, colormap(gray), ...

title(’Source aperture’);

figure, imagesc(angle(object)), axis equal, colormap(gray), ...

title(’Object phase’);

figure, imagesc(abs(u1).^2), axis equal, colormap(gray), ...

title(’Intensity in the object plane (represents SLM area)’);

figure, imagesc(I_detection(3*Ny/8+1:5*Ny/8, 3*Nx/8+1:5*Nx/8)), ...

axis equal, colormap(gray), ...

title(’Total intensity (central portion)’);
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Simulation Results of Our Process
under Incoherent Light

We present here the results of running our process on the exact same conditions as
the Gerchberg–Saxton for incoherent light. We used an slm that is 1,024 µm wide
(128 pixels), with a computational window size of 256⇥256 for the propagation of
incoherent light. The image we tested was Image F, which was the letter F. This im-
age was spatially filtered for both the Gerchberg–Saxton and our process so that
the propagation remains in the computational window. To reduce computation
time, we allowed our algorithm only 800 basis elements and 17 guesses per basis
element. The incoherent light was propagated with 25 point sources chosen by
stratified random sampling (the unit circle was divided into 25 equal-area region
and a point source was randomly chosen from each region). For incoherent light
at 1000 µm and above, we chose our initial basis elements from the sinc() function
(which contains no information about the image itself) because the results of the
initial incoherent propagation were not trustworthy, but the convergence was com-
pleted as our procedure intended. Figure 5.2 uses the values here up to a source
diameter of 48 µm.

62



APPENDIX B. SIMULATION RESULTS OF OUR PROCESS UNDER
INCOHERENT LIGHT

Correlation Values for Image F Reconstructions using Incoherent Light
Source Diameter (µm) Correlation

0 0.996
8 0.996

16 0.996
24 0.995
32 0.995
40 0.994
48 0.993

100 0.992
200 0.995
400 0.995

1,000 0.990
2,000 0.990
4,000 0.989

10,000 0.990
20,000 0.989
40,000 0.989

100,000 0.991

Table B.1: This table lists the raw data of the final correlations of di↵erent image recon-
structions of the letter F from our process using incoherent light. The runs for source
diameters of 400 µm and above are less trustworthy, as discussed in Section 5.3.
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