ABSTRACT

Rigid-body impact sound synthesis methods often omit the ground sound. In this paper we analyze an idealized ground-sound model based on an elastodynamic halfspace, and use it to identify scenarios wherein ground sound is perceptually relevant versus when it is masked by the impacting object’s modal sound or transient acceleration noise. Our analytical model gives a smooth, closed-form expression for ground surface acceleration, which we can then use in the Rayleigh integral or in an “acoustic shader” for a finite-difference time-domain wave simulation. We find that when modal sound is inaudible, ground sound is audible in scenarios where a dense object impacts a soft ground and scenarios where the impact point has a low elevation angle to the listening point.

1. INTRODUCTION

Many sound synthesis examples in computer animation and virtual environments contain moving objects that impact the ground or other large flat surfaces. The ground affects the sound in two ways: 1) as a passive scatterer: sound waves in the room are reflected off the ground, and 2) as an emitter: the surface of the ground vibrates due to impact events, and thus emits sound. Typical approaches incorporate the passive scattering and reflection depending on context and methodology; however, very few physics-based approaches consider the acoustic emissions of the ground itself. In this paper we model the ground as an idealized elastodynamic halfspace, and analyze its sound emission during an object-ground impact. Its relative importance is assessed in various object-ground impact scenarios, and is found to vary greatly.

Ground emission and scattering have been explored in many works over the decades. One line of works [1,2] fit data-driven models to synthesize footstep sounds. Works on fracture and micro-vibrations of the ground? Our contributions are

1. an estimate of the material properties and object sizes where the ground sound is not masked by the object sound,
2. an interactive method to synthesize ground sound (no pre-computation is required), and
3. an “acoustic shader” for finite-difference time-domain simulations that directly evaluates the regularized solution.
2. GROUND SOUND MODEL: BACKGROUND

We model the transient ground sound by first modeling the ground surface vibration, and then using this motion to drive sound propagation into the air. For the former, we derive a closed-form model of the ground vibration to minimize computation while preserving accuracy. Our propagation model is one-way coupled because air pressure oscillations are not powerful enough to affect the ground.

In particular, we use Lamb’s problem \[10\] and its solutions to model the floor surface vibrations from an impact, and we describe them in Sections 2.2 and 2.3. We regularize the model in Section 3 to eliminate undesired singularities, and then we model the sound propagation in Section 4.

2.1. Lamb’s problem

We present Lamb’s problem here, which involves applying an instantaneous normal point load to an elastic halfspace. We present it with a load rather than an impulse in order to simplify the mathematical representation of the solution. In later sections we will derive and use a closed-form representation of the surface acceleration in response to a specific impulse profile.

Consider a linear isotropic elastic half-space with Poisson’s ratio \(\nu\) and stiffness (shear modulus) \(\mu\), as shown in Figure 1. We consider the elastic half-space to be on the bottom (\(z\) negative), and free space to be above it, with the boundary being the horizontal \(z = 0\) plane. Starting at time \(t = 0\), a normal point force of magnitude 1 is applied and held (“push”) at the origin \((0, 0, 0)\). The input force profile on the \(z = 0\) plane is therefore

\[
f(x, y, t) = \delta(x, y) \theta(t) \hat{z},
\]

where \(\delta, \theta\) are the Dirac delta and Heaviside theta functions.

\[
\begin{array}{c|c|c}
\text{air} & f(t) & \hat{z} \\
\hline
\uparrow z & \downarrow u_a(r, t) & \text{ground} \\
\end{array}
\]

Figure 1: Notation for Lamb’s problem: \(f(t)\) is the ground excitation force, and \(u_a(r, t)\) is the vertical displacement response. Note that while our diagram shows \(f(t)\) in its usual downward direction (\(-z\)), we define \(f(t)\) in (1) to point in the \(+z\) direction.

The linear partial differential equations and boundary conditions can be found, for example, in equations 4 and 1 (respectively) of [12]; we present their closed-form solution in the next section.

2.2. Solution to Lamb’s problem

Pekeris [12] first solved Lamb’s problem in 1955 for \(\nu = 1/4\). Others [13] later solved it for generic \(\nu\). We present the solution for generic \(\nu\) from [13]. Some relevant notation is the following:

\[
c_p = \text{speed of compression (P)-waves in the medium},
\]

\[
c_s = \text{speed of shear (S)-waves in the medium},
\]

\[
a = \frac{c_s}{c_p} = \sqrt{1 - \frac{2\nu}{2 - 2\nu}}, \quad r = \sqrt{x^2 + y^2}.
\]

Define \(\kappa_1^2, \kappa_2^2, \kappa_3^2\) as the complex roots to the Rayleigh equation:

\[
16(1 - a^2)\kappa^6 - 8(3 - 2a^2)\kappa^4 + 8\kappa^2 - 1 = 0.
\]

This equation admits three real solutions when \(\nu < 0.2631\); otherwise, it has one real root and two complex conjugates. Let \(\kappa_1^2\) be the largest real root, and define \(\gamma = \kappa_1\). Treat these roots as mathematical tools to help express the result with no direct physical meaning (except that \(\gamma\) is the ratio of the S- and R-wave speeds).

Define the following set of coefficients:

\[
A_j = \frac{(\kappa_j^2 - \frac{1}{4})^2 \sqrt{\kappa_j^2 - \nu^2}}{(\kappa_j^2 - \kappa_1^2)(\kappa_j^2 - \kappa_2^2)}, \quad i \neq j \neq k
\]

While the response contains both horizontal and vertical displacement, only the vertical motion produces sound. The final vertical displacement response \(u_n(r, t)\) is the following:

\[
u_n(r, t) = \frac{1 - \nu}{2\pi \nu} \left\{ \begin{array}{ll}
0 & \tau \leq a, \\
\frac{1}{2} \left(1 - \frac{1}{\sqrt{\kappa_1^2 - \nu^2}} \right) , & a \leq \tau < 1, \\
\frac{1}{\sqrt{\tau^2 - \gamma^2}} , & 1 \leq \tau < \gamma, \\
1 & \tau \geq \gamma,
\end{array} \right.
\]

This solution applies for all \(\tau\), from 0 to 0.5 (see [13]). The piecewise boundaries correspond to the three wavefronts: the pressure P-wave arrives first, when \(\tau = a\), travelling at speed \(c_p\). The shear S-wave arrives when \(\tau = 1\), travelling at speed \(c_s\). Finally, the Rayleigh R-wave arrives when \(\tau = \gamma\), travelling the slowest at speed \(c_r = c_s/\gamma\). See the blue line in Figure 2 for an illustration.

Figure 2: Elastic wavefronts in time: (Blue) Scaled displacement response in the Pekeris solution, at 1 m away. The three wavefronts (P-, S-, R-) are labeled. (Other colors:) Our temporal regularization, described in Section 3. The horizontal axis is time in seconds; the vertical axis is scaled normal displacement.

Note: It is often convenient to flip the signs of \(a^2, \gamma^2, \tau^2\) in the square roots of both the numerator and denominator in the terms containing \(A_1\), so that the inside of the square root is real.

2.3. Singularities

In order to radiate sound waves we need to evaluate the acceleration in the impulse response of Lamb’s problem. Unfortunately, the push-like load’s displacement response, \(u_n(r, t)\), already contains four singularity locations, which means that at each singularity it will be difficult to numerically approximate surface motion.

- One singularity occurs at all positive \(r\) at the origin, where \(r = 0\). This singularity occurs due to the spatial \(\delta\) load location, and it has asymptotic behavior \(1/r\).
Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

- One singularity occurs at each of the wavefronts—one each at the P- (τ = a), the S- (τ = 1), and the R- (τ = γ) wavefronts. The first two wavefronts have continuous but not differentiable singularities. The third wavefront is discontinuous with asymptotic behavior (γ - τ)^{-1/2}.

Our goal is to design a regularizing function in time or in space, as a smooth approximation of a delta impulse, to act as the initial force. We then convolve our function with the un solution to get a closed-form response that removes the singularities.

We consider the physical parameters of our problem in choosing temporal versus spatial regularization. We would like the regularization parameter to directly match the contact timescale and area. Typical contact radii are much smaller than the contact timescale multiplied by any of the three wave speeds; see Table 1 for one example. Therefore the spatial contact area smooths the resulting wave by very little compared to the temporal smoothing. Temporal regularization thus gives us a more accurate response than spatial.

3. TEMPORAL REGULARIZATION OF THE GROUND VIBRATION MODEL

Consider a function f_i(t) that approximates δ(t) on a smoothing timescale ϵ. Since the elastic wave equation is linear and u_i is the response to a Heaviside θ load, we can get the vertical displacement response to the force, f_i * θ (which is an approximate ϵ), by computing the convolution u_θ = f_i * u_i, or

\[u_θ(r,t) = \int_{-\infty}^{\infty} f_i(t - t')u_i(r,t')dt'. \]

The above gives us the displacement response to a "push load" (c.f. [11]). We want an impulse response corresponding to a f_i(t) force profile. Since δ is the derivative of θ and f_i can be written f_i * δ, we can subsequently compute the displacement response u_i to an f_i impulse force by taking a time derivative of u_i, and likewise the acceleration a_i by taking more derivatives:

\[u_i(r,t) = \frac{\partial u_θ}{\partial t}, \]

\[a_i(r,t) = \frac{\partial^3 u_θ}{\partial t^3}. \]

We use the regularization function f_i defined by

\[g_i(t) = \frac{c_0\epsilon}{\pi\sqrt{c_i^2 + \epsilon^2}}, \]

\[f_i(t) = 2g_i(t) - g_2(t). \]

We chose this function for several reasons. Firstly, it approximates a δ(t) function as ϵ → 0: for all ϵ, the total impulse applied is 1, and as ϵ gets smaller, a larger proportion of the impulse is applied over a smaller amount of time (∫_{t-\epsilon}^{t+\epsilon} f_i(t) → 1 as ϵ → 0); see Figure 3 for an illustration. Secondly, it is a smooth approximation of a Hertzian half-sine contact acceleration profile, with timescale 4ϵ/c_i (see Section 4.1). Thirdly, while g_i is only second-order (g_i(t) = O(t^2) as t → ∞), we can form linear combinations of g_i with varying ϵ to achieve higher-order falloff, just like the multiscale extrapolation in [13]. In this case, our f_i achieves fourth-order falloff (O(t^{-4})).

The final reason is that we can analytically derive the closed-form expression for u_θ(r,t) that is provided in [23] of the appendix. Our regularization eliminates the three singularities at the wavefronts and leaves an integrable, fixed 1/τ singularity at the origin. In the supplemental material we show that there are no branch cut crossings (a common type of numerical artifact in complex functions) when ϵ < 0.2631. We still observe branch cut issues when ϵ > 0.2631, which is when κ_2^2, κ_3^3 become complex. We recommend using a piecewise polynomial regularization function (see Conclusion Section 6.1) to deal with the branch cuts.

4. SOUND SYNTHESIS

4.1. Impulse profile approximation

Similar to [5][16], we model the acceleration a(t) using the Hertz contact model. To avoid a discontinuous jerk we approximate the half-sine force with our fourth-order temporal kernel, with ϵ/c_i set to one-fourth the contact timescale t_c:

\[f(t) \approx J_f(t), \]

\[4\epsilon = c_i t_c = 2.87c_i \left(\frac{m^2}{a_0 E^{2/3} v_n} \right)^{1/5}, \]

where a_0, m, E, J, v_n are the object’s local radius of curvature, mass, effective stiffness, impulse, and normal impact velocity.

4.2. Direct sound synthesis via Rayleigh integration

Assuming no scattering or absorption from nearby objects, the Rayleigh integral [17] says the sound pressure at a point (r, z) due to the plane vibration source is equal to

\[p(r, z, t) = \rho_0 \int_{\mathbb{R}^2} a_0(r', t - R'/c_0) \frac{d\mathbf{r}'}{2\pi R'}, \]

where R' = \sqrt{|r - r'|^2 + z^2}, \rho_0 is air density, and c_0 is the speed of sound in air.

We evaluate this integral numerically in Wolfram Mathematica. We found that the singularity at the origin (r = 0), mentioned in Section 2.3, does not cause issues: to check, we experimented with modified versions of u_i where in each version we subtract out a ramp R(r) of radius H times the singularity and add back in a ramp CRH(r) scaled to have the same average value (from analytically integrating about the origin), and we found that numerically the results were identical to those from the unmodified u_i. We tested radii of H = 0.01 m, 0.02 m, and 0.10 m.

Figure 3: Smoothed delta function used as the impulse force profile f_i(t). Here ϵ is in meters, the horizontal axis is time in seconds, and the vertical axis is scaled force.
4.3. Floor sound shader for FDTD acoustic wave solvers

We implemented our floor acceleration model in a general-purpose wave solver [9] that incorporates the scattering of nearby objects. It solves the acoustic wave equation with Neumann boundary conditions

\[
\frac{\partial^2 p(x, t)}{c_0^2 \partial t^2} = \nabla^2 p(x, t) + \frac{\alpha}{c_0} \nabla^2 \frac{\partial}{\partial t} p(x, t), \quad x \in \Omega; \quad t \geq 0; \quad (13)
\]

\[
\partial_n p(x, t) = -\rho_0 a_n(x, t), \quad x \in \partial \Omega, \quad \alpha = 0.02,
\]

by discretizing a region of space onto a rectangular grid and timestepping it with finite differences (see [9] for details); here \(\Omega \) is the air region, \(\partial \Omega \) is the boundary with objects, the subscript \(n \) indicates the normal direction, and we set the air viscosity damping coefficient \(\alpha = 2E-6 \) m. The wave solver samples the boundary normal acceleration \(a_n(x, t) \) through acoustic shaders.

We implemented the floor acceleration model as an “acoustic shader” which evaluates the regularized acceleration \(a_f(r, t) \) due to each contact impulse, where \(r \) is the distance, projected onto the ground plane, between the shader’s sample point \(x \) and the floor impact location. Since there is theoretically an object in contact at the contact point and therefore no adjacent fluid cells, we do not evaluate an acceleration there; therefore the singularity at the contact point \((r = 0) \) does not cause a problem.

For consistency, we modified the acceleration shader in [9] to use the same smooth force profile and impulse evaluation constraints as our ground shader. This also corrects for any amplitude or spectral mismatches between acceleration noise and ground sound.

5. RESULTS

Sound samples for our results are available online.\(^4\)

5.1. Model Validation

The push-like volume displacement \(D \) is given by

\[
D(t) = \int_{x \geq 0} u_s(x, r, t) \, dx.
\]

We evaluate this on a scenario with a small stainless steel ball dropped onto a medium density fiberboard ground and make sure that the volume displacement is consistent with the unregularized Pekeris solution. Relevant parameters are given in Table 1.

We examined the response to a push load with our temporal regularization. Figure 6 plots the vertical displacement at a point 1 m away, and Figure 7 plots the total volume displacement. The curves converge to the Pekeris solution as \(\epsilon \) decreases, and asymptotically, each \(D(t) \) converges to the correct value as \(t \to \infty \).

We also examined the volume displacement, the volume flux, and the momentum flux in response to an impulse. These are each defined as integrating \(u_s \), \(\partial u_s / \partial t \), and \(\alpha \), over the \(\mathbb{R}^2 \) plane. As expected, their curves look like the derivatives of those in Figure 4.\(^4\)

5.2. Sound Synthesis Results

5.2.1. FDTD Synthesis Examples

We added our ground surface acceleration shader to the time domain simulation system from [9]. We also use the modal shader

\[\text{http://graphics.stanford.edu/papers/ground/}\]

\[\text{http://graphics.stanford.edu/papers/ground/}\]

\[\text{http://graphics.stanford.edu/papers/ground/}\]

Table 1: “Ball Drop” Simulation Parameters: Scenario information for the validation, the steel ball, wood ground example in Figure 8 and the comparisons in Table 3. The lowest frequency nontorsional vibration mode for the steel ball is at 131 kHz, so we omit modal sound. Note that \(\epsilon \) is much larger than the contact radius \(r_\alpha \), implying that temporal regularization has a much larger smoothing effect than spatial. These parameters are used in the rest of the results unless stated otherwise.

Figure 4: Volume displacement, \(D(t) \): Here \(\epsilon \) is in meters, and the vertical axis is volume displacement scaled by the same factor as in Figure 2. The modified temporal regularization with a smoothed origin proposed in Section 4.2 has a volume displacement plot that looks identical.

and the acceleration noise shader, which synthesizes impact sound for objects. We show a few notable examples in Figures 8, 9, and 7. In each example the modal sound is almost inaudible.

Figure 5 shows 13 steel balls with a 2 cm diameter hitting a concrete ground from various heights between 3 cm and 23 cm above ground, and Figure 6 shows these balls hitting a soil ground. Each ball has no audible ringing modes. In both examples the sound from the acceleration noise and the ground have similar frequency spectra. The concrete ground smooths the total sound of the steel ball collision; however, the short duration of the transient sound makes it difficult to discern the sound spectrum. On the other hand, the soil greatly amplifies the total sound from the steel ball collision. Since the ball-soil collision has a longer timescale than the ball-concrete collision, we can hear that the soil sound has a slightly different shape than the ball sound, making the ground relevant.

Figure 7 shows a spherical granite rock with a 30 cm diameter dropped from a height of 25 cm above ground (centroid at 40 cm). The only audible ringing modes are at much higher frequencies than the contact timescale, hence they were soft, with a peak am-
The final expression, according to Eq (6.20) in [18], is
\[p_{\text{field}}(t) = \frac{\rho a_0^2 \cos(\theta)}{2} \left(\frac{a(t - \frac{r-n\lambda}{c_0})}{r^2} + \frac{da}{dt} \frac{(t - \frac{r-n\lambda}{c_0})}{c_0 r} \right) \] (16)
where \(a(t) \) is the acceleration at the ball at time \(t \) and \(\theta \) is the angle between the acceleration and \(r \). We assume perfect reflection and model it by adding the reflection image source of this ball, reflecting the dipole direction and position over the \(y \) axis. The total is a longitudinal quadrupole source for hard reflective grounds, and a dipole source for absorptive grounds.

We model the acceleration with the same fourth-order temporal force as that used for the ground in section 4.1,
\[a(t) = -f(t)/m. \] (17)
We simply use \((1 + \kappa)mve_\kappa \) as the impulse, where \(\kappa \) is the coefficient of restitution of the collision.

Figure 5 illustrates an ideal 2 cm steel ball, wood ground impact, with their respective amplitudes. We verified the amplitudes from our wavesolver against these amplitudes. For harder ground materials such as concrete, or lighter object materials such as ceramic, wood, or dice, the ground sound would be much softer compared to the ball sound. The next section generalizes this observation.

5.2.2. Ball ground impact comparisons
Similar to prior work [19], we can use a closed-form expression to model the sound from a small ball. We treat it as a compact dipole source for absorptive grounds. Similar to prior work [16], we can use a closed-form expression to model the sound from a small ball. We treat it as a compact dipole source for absorptive grounds.

We simply use \((1 + \kappa)mve_\kappa \) as the impulse, where \(\kappa \) is the coefficient of restitution of the collision.

Figure 5 illustrates an ideal 2 cm steel ball, wood ground impact, with their respective amplitudes. We verified the amplitudes from our wavesolver against these amplitudes. For harder ground materials such as concrete, or lighter object materials such as ceramic, wood, or dice, the ground sound would be much softer compared to the ball sound. The next section generalizes this observation.

The ball sound does not depend on \(c_s \), the speed of shear waves in the ground, and Figure 10 discusses the ground sound dependence on \(c_s \). The ground amplitude increases linearly in proportion to \(c_s \) until a threshold \(c_b \approx A\sqrt{c_0R/T_e} \) determined by the

\[
\begin{array}{|c|c|c|}
\hline
\text{Material} & E (\text{Pa}) & \nu & \rho (\text{kg m}^{-3}) \\
\hline
\text{Stainless Steel} & 1.96E+11 & 0.27 & 7955 \\
\text{Ceramics} & 7.2E+10 & 0.19 & 2700 \\
\text{Granite} & 5.07E+10 & 0.28 & 2670 \\
\text{Concrete} & 1.85E+10 & 0.20 & 2250 \\
\text{Wood} & 1.1E+10 & 0.25 & 750 \\
\text{Plastic (ABS)} & 1.4E+9 & 0.35 & 1070 \\
\text{Soil} & 4.1E+7 & 0.25 & 1350 \\
\text{Paraffin Wax} & 5.57E+7 & 0.37 & 786 \\
\hline
\end{array}
\]

Table 2: Material properties used for common materials: The Young’s modulus is \(E \), Poisson’s ratio is \(\nu \), and density is \(\rho \). We used medium density fiberboard for wood.

5.3. Impact Sound Parameter Dependence
Let us describe the impact scenario with the parameters \((t_e, a_0, v_n, \kappa, E_f, \nu_f, c_s, \rho_0, R, \theta)\), where the subscript \(f \) indicates ground, \(b \) indicates ball, and \((R, \theta)\) indicate the listening point distance and elevation angle. We hereby fix all parameters to their Table 4 values and vary just one or two of them at a time.

\[\rho_0, E_f \]: By algebra, the ground sound amplitude is proportional to \(\rho_0/E_f \), while the ball sound stays constant. Table 2 lists these properties for common materials, and Table 3 lists the intensity ratio for each material pair.

\(\nu_f \): We found that changing the ground Poisson’s ratio does not significantly affect either sound amplitude.

\(t_e \): Figure 9 discusses the dependence on contact timescale for one example. In the far field \((R \gg c_0t_e)\) both the ground and the ball sound intensity have similar power law dependence.

\(\theta \): Figure 11 shows the dependence on listening point angle from the plane. As the listening point gets closer to the plane, the ball sound gets softer at a faster rate than the ground sound.

\(c_s \): The ball sound does not depend on \(c_s \), the speed of shear waves in the ground, and Figure 10 discusses the ground sound dependence on \(c_s \). The ground amplitude increases linearly in proportion to \(c_s \) until a threshold \(c_b \approx A\sqrt{c_0R/T_e} \) determined by the
Relative Intensities (dB) of Ground Sound Compared to Ball Sound

<table>
<thead>
<tr>
<th>Ball</th>
<th>Steel</th>
<th>Ceramics</th>
<th>Granite</th>
<th>Concrete</th>
<th>Wood</th>
<th>Plastic</th>
<th>Soil</th>
<th>Wax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granite</td>
<td>-41.21</td>
<td>-32.27</td>
<td>-29.91</td>
<td>-22.80</td>
<td>-17.09</td>
<td>-6.81</td>
<td>8.09</td>
<td>8.61</td>
</tr>
<tr>
<td>Concrete</td>
<td>-50.76</td>
<td>-41.81</td>
<td>-39.46</td>
<td>-32.34</td>
<td>-26.63</td>
<td>-16.36</td>
<td>-1.45</td>
<td>-0.93</td>
</tr>
<tr>
<td>Wood</td>
<td>-47.67</td>
<td>-38.73</td>
<td>-36.37</td>
<td>-29.26</td>
<td>-23.55</td>
<td>-13.27</td>
<td>1.64</td>
<td>2.15</td>
</tr>
<tr>
<td>Soil</td>
<td>-50.35</td>
<td>-41.41</td>
<td>-39.05</td>
<td>-31.94</td>
<td>-26.22</td>
<td>-15.95</td>
<td>-1.04</td>
<td>-0.53</td>
</tr>
</tbody>
</table>

Table 3: **Theoretical relative intensity (dB) of ground to ball sound** for the scenario in Table 1. Ball materials are listed on the left, ground on the top. Positive values indicate the ground was louder than the ball. Impact timescale was kept constant at 1.63E-4 s and Poisson’s ratio at 0.25, as neither significantly affect relative amplitude. Scenarios with louder ground sound (> 0 dB) are highlighted in light orange. Note that our overhead listening point is near the maximum relative loudness for the ball, whereas low listening angles tend to receive more ground sound (Figure 11 expands on this relationship).

Figure 7: An example with a 30 cm spherical granite rock dropped from 25 cm above ground onto soil, simulated with our wave-solver. See the supplemental material for the sound. Each sound (rock, ground, combined) is normalized to 20 Pa. For the almost silent modal component, we used the modal shader used in [9] with Rayleigh damping parameters $\alpha = 6, \beta = 1E-7, s$ in SI units. The listening point is at (0.45, 0.27, 0.48) m.

Figure 8: Ideal unobstructed sound for a 2 cm steel ball dropped from 15 cm impacting a wood ground with restitution coefficient 0.5. The listening point is 20 cm directly above the impact point. The quadrupole shape of the ball sound is different from the ground sound, but at high frequencies the frequency content sounds similar and it is hard to tell perceptually. The ground sound adds a significant amount of amplitude to the combined sound, and the combined sound seems to be higher pitched than either sound.

5.4. Discussion

We found that in most everyday scenarios with rigid objects and listening points with high elevation angle, the ground sound would be masked by the object sound: the amplitude of the ball sound is louder, the frequency content is similar, and the contact timescale is often too short to hear the distinct waveforms. In these scenarios, namely the unhighlighted cells in Table 2 we can omit the ground sound.

If the object is dense and the contact timescale t_c and the listening point distance R.

$\alpha_0, \beta, \kappa, R$: In the far field, they affect both sounds equally.

6. Conclusion and Future Work

We regularized the solution to Lamb’s problem to give us a closed-form expression for ground surface acceleration. For impacts from small balls, we used a Rayleigh integral to compute ground sound amplitudes and compared them with object acceleration noise. Furthermore, we implemented an acoustic shader in an FDTD wave-solver to synthesize sound from generic object impacts with the ground, combining modal sound, acceleration noise, and ground sound. We found that the ground sound is more important when the listening point is at a low angle, when the ground has a low shear modulus, or when the object has a high density. Furthermore, ground noise (similar to acceleration noise) is important only for objects where modal ringing noise, which is louder in larger objects, was not audible. In the absence of modal sound, the relative importance of ground sound was not affected by object size in “ball sounds. In a few examples we examined, such as steel or granite objects hitting wood, concrete, and soil, the modal ringing sound for the object is too soft, but for larger, less round, and softer objects, the modal ringing sound can dominate the total power output.
6.1. Limitations and future work

Our work has several limitations that motivate future work:

1. **Stable numerical evaluation for general \(\nu \):** Our model crosses a discontinuous branch cut when evaluated for high \(\nu \geq 0.2631 \). We were unable to express the regularized response \(u_\epsilon \) in a form that eliminates this branch cut. We explored an alternate regularization using a piecewise polynomial \(f_\epsilon = (1 - (t/\epsilon)^2)^n \) for \(|t| < \epsilon \), and this gives an expression that does not have the branch jump. However, we used \(n = 4 \) to get a continuous acceleration, and the degree-8 polynomial produces a result that suffers from catastrophic cancellation when \(\epsilon \) is small. Future work should ensure stable numerical evaluation for all \(\nu \) values.

2. **Finite-depth ground and realistic flooring:** Our ground sound model applies well for ground that is homogeneous for a very deep layer, greater than approximately 50 m deep. For shallower ground layers, the reflections between the layer boundaries form resonance modes that our model does not capture. Furthermore, when an object is dropped onto a hard floor in a building, we hear the vibrational response of the building. Future work could model the responses of more realistic building and flooring structures.

3. **Tangential frictional loads:** We only modeled the vertical response to a vertical load. Future work can regularize the closed-form solutions for a vertical response to a tangential load, such as incurred by contact friction.

4. **No closed-form sound:** We provided an expression for surface acceleration but not the sound. Future work could derive a model for the final sound based on listening position.

7. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their feedback. We acknowledge support from the National Science Foundation (NSF) under grant DGE-1656518, the Toyota Research Institute (TRI), and Google Cloud Platform compute resources. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF, the TRI, any other Toyota entity, or others.

8. REFERENCES

How Listening Point Angle Affects Sound Intensity

Figure 11: Angular Dependence of Sound Intensity: The listening point is 20 cm away, with 90° being directly overhead, and 0° in the plane. The dipole ball model has a minimum at 5° because its center is 1 cm above the ground. Observe that the ground sound is significantly louder than the ball sound at low angles.

A. Derivation of Regularized Response

In this derivation, we let \(t' = c_s t \), and we note that at the end, we need to scale by the right power of \(c_s \).

\[
g_s(t') = \frac{\epsilon f \pi}{t'^2 + \epsilon^2} \tag{18}
\]

We want to find the convolution \(k'_s = g_s(t') * u_w(r, t') \). This represents the displacement response to an arctan load, which approximates the Heaviside theta load. Define \(U_t, W_t \), as the following

\[
U_t(t', \sigma) = \frac{1}{\pi} \int_0^\infty g_s(t' - s) ds; \tag{19}
\]

\[
V_s(t', s, \alpha) = \int g_s(t' - s) \sqrt{s^2 - \alpha^2} ds; \tag{20}
\]

\[
W_s(t', s, \alpha) = \int g_s(t' - s) \sqrt{\alpha^2 - s^2} ds. \tag{21}
\]

Integrating,

\[
U_t(t', \sigma) = \frac{1}{2\pi} + \frac{1}{\pi} \arctan \left(\frac{t' - \sigma}{\epsilon} \right); \tag{22}
\]

\[
Z_s(t', \alpha) = \sqrt{\alpha^2 + (\epsilon - \imath t')^2}; \tag{23}
\]

\[
V_s(t', s, \alpha) = \text{Re} \left(\frac{1}{\pi Z_s(t', \alpha)} \left(-\log(\epsilon - \imath(t' - s)) + \log(\alpha^2 - (t' + \imath \epsilon) s - \imath Z_s(t', \alpha) \sqrt{s^2 - \alpha^2}) \right) \right); \tag{24}
\]

\[
W_s(t', s, \alpha) = \text{Im} \left(\frac{1}{\pi Z_s(t', \alpha)} \left(-\log(\epsilon - \imath(t' - s)) + \log(\alpha^2 - (t' + \imath \epsilon) s + Z_s(t', \alpha) \sqrt{s^2 - \alpha^2}) \right) \right). \tag{25}
\]

Check the Mathematica notebook on the website for verification.

Plugging in the integration limits, the convolution \(k'_s \) is

\[
k'_s(r, r') = \frac{1 - \nu}{4\pi\mu} \left(U_t(t', ar) + U_t(t', r) + 2W_s(t', \gamma r, \gamma r) - W_s(t', c_s ar, \gamma r) + \sum_{j=2}^3 (V_s(t', c_s ar, \kappa_j r) - V_s(t', c_s ar, \kappa_j r)) \right). \tag{26}
\]

Our final expression, in terms of the original \(t \), is

\[
k_s(r, t) = k'_s(r, c_s t), \tag{27}
\]

that is, there is no missing \(c_s \) scale factor because the extra \(c_s \) from the convolution is canceled by the missing \(c_s \) from normalizing \(g_s \). For fourth-order, we simply take

\[
u_s(r, t) = 2k_s(r, t) - k_s(r, t). \tag{28}
\]

In the supplemental material we show that when \(\nu \in [0, 0.2631] \), this solution does not cross any branch cuts as we vary \(r, t \).
On the Impact of Ground Sound: Supplemental

Ante Qu and Doug L. James

June 19, 2019

1 No branch cut crossings when $0 \leq \nu < 0.2631$

We show here that our regularized solution, detailed in Appendix A, does not cross a principal branch cut when $0 \leq \nu < 0.2631$.

For these ν, κ_j are real, and $\kappa_2, \kappa_3 < a [1]$. By inspection of (26), this means $s > \alpha$ in V_s, $\alpha > s$ in W_s, and $\epsilon, s, \alpha > 0$. The principal branch cut for both \sqrt{z} and $\log(z)$ are at the negative real line.

$Z_c(t', \alpha)$: The radicand of Z_c never approaches the negative real line: the only way to achieve zero imaginary part is for $t' = 0$, when the radicand is a positive real number.

The first log in $V_c(t', s, \alpha)$ and $W_c(t', s, \alpha)$: $\epsilon + s - it'$ has a positive real part, so it never crosses the negative real line.

Second log in $V_c(t', s, \alpha)$: because Z_c is a square root, it has positive real part. Therefore the entire expression inside the log has negative imaginary part, never crossing the negative real line.

Second log in $W_c(t', s, \alpha)$: When $t' \geq \alpha^2/s$, the imaginary part of Z_c is negative, meaning the entire expression inside the log is in the third and fourth quadrants. When $t' < \alpha^2/s$, the real part of the expression inside the log is positive, meaning it is in the first and fourth quadrants. Overall, the expression only lives in the first, third, and fourth quadrants, implying that it cannot cross the negative real line.

We have shown that no branch crossings occur for any pair of (t', s) in our solution.

References