
Fast Linking Numbers for Topology Verification of Loopy Structures

ANTE QU and DOUG L. JAMES, Stanford University, USA

(a) Animation (b) 1/Δ𝑡 = 480𝐻𝑧 (c) 1/Δ𝑡 = 1200𝐻𝑧 (d) 1/Δ𝑡 = 2400𝐻𝑧

Fig. 1. Topologically verified rigid-body simulation of fitted Kusari chainmail (a) is used to pack the garment of 14112 curved rings with 18752 links
into a box for 3D printing. Our fast linking number methods can detect pull-through between previously linked curved loops that result from large timesteps:
(b) widespread failure when timestepped at 𝑓 = 480𝐻𝑧 with 4048 destroyed links shown in red; (c) timestepping at 𝑓 = 1200𝐻𝑧 is much better and looks
visually fine, but still has 16 failed links hiding inside the pile; whereas (d) using 𝑓 = 2400𝐻𝑧 we can verify that there are no violated links (or spurious new
ones) in the final result. Rapid topology verification also allows corrupted simulations to be detected and aborted early.

It is increasingly common to model, simulate, and process complex materials

based on loopy structures, such as in yarn-level cloth garments, which

possess topological constraints between inter-looping curves. While the

input model may satisfy specific topological linkages between pairs of closed

loops, subsequent processingmay violate those topological conditions. In this

paper, we explore a family of methods for efficiently computing and verifying

linking numbers between closed curves, and apply these to applications

in geometry processing, animation, and simulation, so as to verify that

topological invariants are preserved during and after processing of the input

models. Our method has three stages: (1) we identify potentially interacting

loop–loop pairs, then (2) carefully discretize each loop’s spline curves into

line segments so as to enable (3) efficient linking number evaluation using

accelerated kernels based on either counting projected segment–segment

crossings, or by evaluating the Gauss linking integral using direct or fast

Authors’ address: Ante Qu, antequ@cs.stanford.edu; Doug L. James, djames@cs.

stanford.edu, Computer Science, Stanford University, 353 Jane Stanford Way, Stanford,

CA, 94305, USA.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0730-0301/2021/8-ART106 $15.00

https://doi.org/10.1145/3450626.3459778

summation methods (Barnes–Hut or fast multipole methods). We evaluate

CPU and GPU implementations of these methods on a suite of test problems,

including yarn-level cloth and chainmail, that involve significant processing:

physics-based relaxation and animation, user-modeled deformations, curve

compression and reparameterization. We show that topology errors can be

efficiently identified to enable more robust processing of loopy structures.

CCS Concepts: • Computing methodologies→ Animation; Shape mod-
eling; • Theory of computation→ Computational geometry.

Additional Key Words and Phrases: Topology, checksum, linking number,

Gauss linking integral, Barnes–Hut, fast multipole method, yarn-level cloth

ACM Reference Format:
Ante Qu and Doug L. James. 2021. Fast Linking Numbers for Topology

Verification of Loopy Structures. ACM Trans. Graph. 40, 4, Article 106 (Au-
gust 2021), 19 pages. https://doi.org/10.1145/3450626.3459778

1 INTRODUCTION
It is increasingly common to model, simulate, and process com-

plex materials based on loopy structures, such as in knitted yarn-

level cloth garments, which possess topological constraints between

inter-looping curves. In contrast to a solid or continuum model,

the integrity of a loopy material depends on the preservation of

its loop–loop topology. A failure to preserve these links, or an ille-

gal creation of new links between unlinked loops, can result in an

incorrect representation of the loopy material.

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459778
https://doi.org/10.1145/3450626.3459778

106:2 • AnteQu and Doug L. James

Unfortunately, common processing operations can easily destroy

the topological structure of loopy materials. For example, time-

stepping dynamics with large time steps or contact solver errors

that cause pull-through events, deformation processing that allows

loops to separate or interpenetrate, or even applying compression

and reparameterization on curves, can all cause topology errors.

Furthermore, once the topology of a loopy material has been ruined,

the results can be disastrous (an unraveling garment) or misleading

(incorrect yarn-level pattern design).

In this paper, we explore a family of methods for efficiently com-

puting and verifying linking numbers between closed curves. Intu-

itively, if two loops are unlinked (i.e., they can be pulled apart), the

linking number is zero; otherwise, the linking number is a nonzero

signed integer corresponding to how many times they loop through

one another, with a sign to disambiguate the looping direction (see

Figure 2). In mathematical terms, the linking number is a homo-

topical invariant that describes the “linkage” of two oriented closed

curves in 3D space. While a closed curve can be either a “knot” or

a simple “loop,” we will use the term “loop” to refer to all closed

curves. Given two disjoint, oriented loops 𝛾1 and 𝛾2 where each

maps 𝑆1 → R3, the linking number is an integer-valued function,

𝜆(𝛾1, 𝛾2), that counts the number of times each curve winds around

the other [Rolfsen 1976]. Curve deformations that result in one part

of a curve crossing the other loop at a single point must change

the linking number by ±1. By evaluating (or knowing) the linking

numbers before a computation, then evaluating them afterwards, we

can detect certain topological changes. A linking number checksum

can therefore be useful as a sanity check for topology preservation—

while we cannot rule out intermediate topology changes when two

states have the same linking number, different linking numbers

imply a topology change. We efficiently and systematically explore

this idea and apply it to several applications of loopy materials in

computer graphics where it is useful to verify the preservation of

topological invariants during and after processing (see Figure 1 for

a preview of our results).

-1 0 +1 +2

Fig. 2. Linking numbers count the oriented linkages between two closed
curves (examples from https://en.wikipedia.org/wiki/Linking_number).

Our method has three stages: (1) to avoid computing linking num-

bers between obviously separated loops, we first perform a pair

search to identify potentially linked loops; (2) we discretize each

loop’s spline curves into line segments for efficient processing, be-

ing careful to ensure that the discretized collection of loops remain

topologically equivalent to the input; then (3) we evaluate all loop–

loop linking numbers (and record the results in a sparse matrix)

using one of several accelerated linking-number kernels: either (i) by

counting projected segment–segment crossings, or (ii) by evaluating

the Gauss linking integral using direct or fast summation methods

(both Barnes–Hut and fast multipole methods). An overview of our

method is shown in Figure 4. We evaluate CPU and GPU imple-

mentations of these methods on a suite of test problems, including

yarn-level cloth and chainmail examples, that involve significant

processing: physics-based relaxation and animation, user-modeled

deformations, curve compression and reparameterization. From our

evaluation we conclude that counting crossings and the Barnes–

Hut method are both efficient for computing the linking matrix. In

addition to loopy structures, we also show an example where our

method is part of an automatic procedure to topologically verify

braids, which are structures with open curves that all attach to two

rigid ends; in particular, we verify the relaxation of stitch patterns

by attaching the ends of stitch rows to rigid blocks. We show that

many topology errors can be efficiently identified to enable more

robust processing of loopy structures.

2 BACKGROUND

2.1 Computing the Linking Number
There are several equivalent ways to calculate (and define) the

linking number, all of which will be explored in this paper. The

linking number, 𝜆(𝛾1, 𝛾2), is a numerical invariant of two oriented

curves, 𝛾1, 𝛾2. It intuitively counts the number of times one curve

winds around the other curve (see Figure 2). The linking number is

invariant to link homotopy, a deformation in which curves can pass

through themselves, but not through other curves [Milnor 1954].

Counting Crossings. One way to compute the linking number is to

count crossings in a link diagram. Suppose our curves are discretized

into polylines. The link diagram is a 2D regular projection of this

set of 3D curves that also stores the above–belowness at every

intersection; that is, if the projection plane is the XY plane, then the

Z coordinate of each curve indicates which curve is above or below.

A projection is deemed regular if no set of 3 or more points, or 2 or

more vertices, coincide at the same projected point [Rolfsen 1976].

To compute the linking number, start with 𝜆(𝛾1, 𝛾2) = 0, and at

every detected intersection, compare the orientation of the curves

with Figure 3, and increment the linking number by +1/2 if it is
positive, or −1/2 if it is negative.

Fig. 3. Crossing orientation determines whether to increment or decre-
ment the linking number. (From https://en.wikipedia.org/wiki/Linking_

number).

Gauss’s Integral Form. Anothermathematically equivalentmethod

to compute the linking number, which doesn’t require a projection

plane or geometric overlap tests, is to compute the linking integral

𝜆, first introduced by Gauss [Rolfsen 1976]:

𝜆(𝛾1, 𝛾2) =
1

4𝜋

∫
𝛾1

∫
𝛾2

r1 − r2
|r1 − r2 |3

· (dr1 × dr2). (1)

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

https://en.wikipedia.org/wiki/Linking_number
https://en.wikipedia.org/wiki/Linking_number
https://en.wikipedia.org/wiki/Linking_number

Fast Linking Numbers for Topology Verification of Loopy Structures • 106:3

This integral form can be interpreted as an application of Ampere’s

law from magnetostatics for a current loop and a test loop
1
.

Direct Summation Methods. If the loops 𝛾1, 𝛾2 are discretized into

line segments indexed by 𝑗 and 𝑖 , and we denote the midpoints of

𝛾1 by r𝑗 and 𝛾2 by r𝑖 , and the line segment length vectors by s𝑗 and
s𝑖 respectively, then taking a midpoint quadrature, we have

𝜆(𝛾1, 𝛾2) ≈
1

4𝜋

∑
𝑗,𝑖

r𝑗 − r𝑖
|r𝑗 − r𝑖 |3

· (s𝑗 × s𝑖) . (2)

This midpoint approximation is only accurate when the segments

are short compared to the distance between each pair. Fortunately,

an exact expression for polyline loops is known of the form

𝜆(𝛾1, 𝛾2) =
∑
𝑗,𝑖

𝜆 𝑗𝑖 (3)

where 𝜆 𝑗𝑖 is the contribution from a pair of line segments [Arai 2013;

Berger 2009]. If we denote the vertices (endpoints of the segments)

of each loop by l𝑗 , k𝑖 , the contribution from the segment pair (𝑗, 𝑖)
is given in [Arai 2013] (which uses the signed solid angle formula

[Van Oosterom and Strackee 1983]):

𝜆 𝑗𝑖 =
1

2𝜋

(
atan

(
a · (b × c)

|a| |b| |c| + (a · b) |c| + (c · a) |b| + (b · c) |a|

)
+ atan

(
c · (d × a)

|c| |d| |a| + (c · d) |a| + (a · c) |d| + (d · a) |c|

))
, (4)

where

a = l𝑗 − k𝑖 , b = l𝑗 − k𝑖+1, c = l𝑗+1 − k𝑖+1,
d = l𝑗+1 − k𝑖 , atan(𝑦/𝑥) = atan2(𝑦, 𝑥) .

This computation requires two trigonometric operations per seg-

ment pair. More recently, Bertolazzi et al. [2019] used the arctan

addition formula to eliminate all trigonometric operations.

Fast Summation Methods. If we discretize the loops into 𝑁 sam-

ples, Gauss’s double integral can be approximated using fast summa-

tion methods, such as the Barnes–Hut algorithm which uses a tree

to compute 𝑁 -body Gaussian summations in 𝑂 (𝑁 log𝑁) time. Al-

ternately one can use the Fast Multipole Method (FMM); some FMM

libraries provide off-the-shelf implementations of the Biot–Savart

integral, which is the inner integral of the linking integral.

2.2 Related Work
Many works in the past have tackled the topic of robust collision

processing. Epsilon geometry and robust predicates [Salesin et al.

1989; Shewchuk 1997] have been used to precisely answer “inside–

outside” questions, such as where a point lies with respect to a

flat face (“vertex–face”), or a straight line with respect to another

(“edge–edge”). These determinant-based geometric tests (such as

1Magnetostatics Interpretation: If we imagine one loop has current flowing through it,

the Gauss linking integral essentially applies Ampere’s law on the other loop, using

the magnetic field generated by the current loop (given to us by the Biot–Savart law),

to compute the total current enclosed. Similar to the winding number computation

in [Barill et al. 2018], we note that the first term of the integrand is the gradient

of the Laplace Green’s function 𝐺 (r1, r2) = −1/(4𝜋 |r1 − r2 |) ; in magnetostatics,

the vector potential A of a monopole current source at r1 with current 𝐼 and length

vector s1 is 𝜇0𝐼s1𝐺 (r1, r2) , and the magnetic field at r2 due to r1 is B = ∇2 × A =

−𝜇0𝐼s1 × ∇2𝐺 (r1, r2) . Applying Ampere’s law gives us the linking integral. This

interpretation will later allow us to apply computational tools for multipole expansions.

[Feito and Torres 1997]) are also useful for detecting inversions

in finite elements and preventing them from collapsing [Irving

et al. 2004; Selle et al. 2008]. Some papers [Harmon et al. 2011; Kim

et al. 2019; Selle et al. 2008; Volino and Magnenat-Thalmann 2006;

Zhang et al. 2007] propose methods to repair interpenetrations

between objects by minimizing a computable quantity, such as an

intersection contour, a space–time intersection volume, an altitude

spring, or another form of energy. For models with a large number

of elements, a few works use hierarchical bounding volumes to

compute energy-based collision verification certificates [Barbič and

James 2010; Zheng and James 2012], or to validate geometry in hair

[Kaufman et al. 2014], holey shapes [Bernstein and Wojtan 2013],

or cloth [Baraff et al. 2003].

Many of the above methods either perform a check or repair a

violation by answering discrete collision-detection questions about

a point vs. a flat face or a straight edge vs. another straight edge.

To generalize these questions to arbitrary surfaces (and soups and

clouds), a few papers [Barill et al. 2018; Jacobson et al. 2013] compute

generalized winding numbers to answer the inside–outside question.

The generalized winding number can be expressed as a Gaussian

integral, and Barill et al. [2018] uses Barnes–Hut style algorithms

to speed up the computation.

Continuous collision detection (CCD) methods [Basch 1999; Brid-

son et al. 2002; Brochu et al. 2012; Harmon et al. 2011; Wang and

Cao 2021] can verify that a deformation trajectory is collision free.

Such methods could be used to detect curve–curve crossings and

thus topology changes. In contrast, our approach of computing a

topology verification checksum is a discrete before/after test: we

verify the topology at a fixed state rather than the geometry along

the entire deformation path. While our method cannot guarantee a

deformation is collision free, it works even if the deformation path is

ambiguous (e.g., in verifying model reparameterizations, which we

will show in §4.3.2), or, when the path is known, it can be performed

as sparsely or frequently as the user requires.

For simulations and deformations that are more suitable for 1D

rod elements rather than volumetric elements, it can be difficult

to apply discrete inside–outside checks. For example, in yarn-level

simulations of cloth, yarns are often modeled as cylindrical spline

or rod segments [Kaldor et al. 2008, 2010; Leaf et al. 2018; Wu et al.

2020]. While the inside–outside question applied to the cylindrical

volumes can determine interpenetration when detected, oftentimes

an illegal or large simulation step can cause a “pull-through,” where

the end state has no interpenetration but rather a topological change

in the curve configuration. Pull-throughs can cause changes to the

appearance and texture of the resulting relaxed pattern, yet remain

undetected unless spotted by a human eye. Many of these simula-

tions [Leaf et al. 2018; Yuksel et al. 2012] prevent pull-throughs by

using large penalty contact forces and limiting step sizes using a

known guaranteed displacement limit. Some stitch meshing papers

[Guo et al. 2020; Narayanan et al. 2018, 2019; Wu et al. 2018, 2019]

avoid closed loops as a result of making the model knittable or ma-

chine knittable. In contrast, many of the models from [Yuksel et al.

2012] consist of yarns that form closed loops. We propose a method

to automatically detect pull-throughs in closed-loop yarn models

after they occur, so that the simulation can take more aggressive

steps and backtrack or exit when the violation is detected. Other

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

106:4 • AnteQu and Doug L. James

modeling applications in graphics that are more suitable for 1D

elements include chains and chainmail [Bergou et al. 2008; Mazhar

et al. 2016; Tasora et al. 2016], threads [Bergou et al. 2010], knots

[Bergou et al. 2008; Harmon et al. 2011; Spillmann and Teschner

2008; Yu et al. 2020], hair [Chang et al. 2002; Kaufman et al. 2014;

Selle et al. 2008], and necklaces [Guibas et al. 2002].

To detect pull-through violations of edge–edge contacts, one can

locally verify the sign of the volume of the tetrahedron (computed

as a determinant) spanned by the two edges. To generalize this

local notion to arbitrary closed curves, one can compute the linking

number between the two curves. Interestingly, Gauss’s integral form

of the linking number uses, in the integrand, this exact determinant,

applied on differential vectors, but scaled so that it is the degree, or

signed area of the image, of the Gauss map of the link.

In graphics, some works [Dey et al. 2013, 2009] compute the link-

ing number, by projecting and computing crossings, to determine if

a loop on an object’s surface is a handle versus a tunnel, which is use-

ful for topological repair and surface reparameterization. Another

work [Edelsbrunner and Zomorodian 2001] computes the linking

numbers of simplicial complexes within DNA filtrations, by using

Seifert surface crossings (which are generated from the filtration

process), to detect nontrivial tangling in biomolecules. In the com-

putational DNA topology community, many papers [Clauvelin et al.

2012; Fuller 1978; Klenin and Langowski 2000; Krajina et al. 2018;

Sierzega et al. 2020] use topological invariants such as the linking

number, twist, and writhe to understand DNA ribbons; in partic-

ular, Berger [2009] summarizes how to compute these quantities,

and [Arai 2013; Bertolazzi et al. 2019] present more robust exact

expressions for line segment curves using the signed solid angle

formula [Van Oosterom and Strackee 1983]. Moore [2006] also dis-

cusses how to subdivide spline curves for computational topology.

A few works in animation and robotics [Ho and Komura 2009; Ho

et al. 2010; Pokorny et al. 2013; Zarubin et al. 2012] also use the

linking integral as a topological cost in policy optimization, e.g., for

grasping. However, none of these works propose using acceleration

structures, such as Barnes–Hut trees or the Fast Multipole Method

[Greengard and Rokhlin 1987], to compute the linking number be-

tween curves, mainly because the input size is sufficiently small

or the problem has a special structure (e.g., simplicial complexes

that come with surface crossings, or ribbons where the twist is easy

to compute) that allows for a cheaper method. We propose using

acceleration structures to speed up linking-number computation

for general closed curves.

The linking integrand uses the Green’s function for the Laplace

problem in a Biot–Savart integral, and there are numerous Fast Mul-

tipole libraries for the Laplace problem, including FMM3D [Cheng

et al. 1999] and FMMTL [Cecka and Layton 2015]. FMMTL provides

an implementation of the Biot–Savart integral and has recently been

used to simulate ferrofluids in graphics [Huang et al. 2019]. Another

library [Burtscher and Pingali 2011] implements a very efficient,

parallel Barnes–Hut algorithm for the N-Body Laplace problem on

the GPU.

3 FAST LINKING NUMBER METHODS
In this section, we describe several ways to compute linking numbers

(based on Algorithm 1) which all take an input model and generate

the sparse upper-triangular linking matrix as a topology-invariant

certificate for verification.

ALGORITHM 1: Method ComputeLinkingNumbers

Input :Λ = {𝛾𝑖 }, a list of looped curves.

Output :𝑀 , a sparse triangular linking matrix of integers.

Function ComputeLinkingNumbers(Λ):
𝑀 ← 0 ;

𝑃 ← PotentialLinkSearch(Λ);

{Γ𝑖 } ← Discretize(Λ, 𝑃);

foreach (𝑖, 𝑗) ∈ 𝑃 do
𝑀𝑖 𝑗 ←ComputeLink(Γ𝑖 , Γ𝑗);

end
return𝑀 ;

3.1 Method Overview
The coremethod takes as input amodel of closed loops defined either

by line-segment endpoints or polynomial spline control points, and

outputs a certificate consisting of a sparse triangular matrix of

pairwise linking numbers between loops. Our goal is to robustly

handle a wide range of inputs, such as those with a few very large

intertwined loops, e.g., DNA, or many small loops, e.g., chainmail.

The main method “ComputeLinkingNumbers” is split into three

stages (which are summarized in Figure 4 and described in pseu-

docode in Algorithm 1):

(1) Potential Link Search (PLS) (§3.2): This stage exploits the fact

that any pair of loops with disjoint bounding volumes have

no linkage. It takes a sequence of loops and produces a list

of potentially linked loop pairs by using a bounding volume

hierarchy (BVH).

(2) Discretization (§3.3): This stage discretizes the input curves,

if they are not in line segment form, into a sequence of line

segments for each loop, taking care to ensure that the process

is link homotopic (i.e., if we continuously deform the original

curves into the final line segments, no curves cross each other)

and thus preserves linking numbers.

(3) Linking Number Computation (§3.4): This stage computes

the linking matrix for the potentially linked loops, and can

be performed with many different linking-number methods.

Fast Verification. Verification of the linking matrix can be done

exhaustively by computing and comparing the full linking matrix

computed using Algorithm 1. However, in some applications it is

sufficient to know that any linkage failed, e.g., so that a simulation

can be restarted with higher accuracy. In such cases, an “early exit”

strategy can be used to quickly report topological failure by exiting

when any linking number differs from the input.

Bounding Volumes. All bounding volumes in our method are con-

vex. The convexity provides guarantees in §3.2 and §3.3.

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

Fast Linking Numbers for Topology Verification of Loopy Structures • 106:5

{(2,3),
 (3,4)}

Potential Link Search

1
2

3

4

1
2

3

4

Discretization Linking Number Computation

Output Sparse Linking Matrix

Input Splines

Fig. 4. Method Overview: Our method inputs a set of spline curves and outputs a sparse triangular linking number matrix as a topology invariant. First, (§3.2)
we perform a potential link search to get a list of potentially linked loop pairs. Second, (§3.3) we discretize the input into a set of homotopically equivalent
polylines. Third, (§3.4) we compute the linking number for each potentially linked pair, and output the sparse linking matrix.

3.2 Potential Link Search (PLS)
When the number of loops, 𝐿, is large, computing the linking integral

between all loop pairs can be expensive, as there are

(
𝐿
2

)
= 𝐿(𝐿 −

1)/2 pairs. For this stage of the method, we input a list of loops {𝛾𝑖 },
and output a list of potentially linked loop pairs, 𝑃 = {(𝑖, 𝑗)} (where
𝑖 < 𝑗 are loop indices), which gets passed to the next stages (§3.3

and §3.4). All other loop pairs must have 0 linkage.

We exploit the fact that if two loops have a nonzero linkage, then

their bounding volumes, which are convex, must overlap. Therefore,

we precompute an axis-aligned bounding box (AABB) for each loop,

and build an AABB-tree of loops. Edelsbrunner and Zomorodian

[2001] also use bounding boxes to cull the list of potentially linked

loops. For any two loops with overlapping bounding volumes, we

add the pair to a list of potentially linked loops. See Algorithm 2 for

pseudocode, and Figure 4 for an illustration.

ALGORITHM 2: Potential Link Search

Input :Λ = {𝛾𝑖 }, a list of looped curves.

Output :𝑃 = {(𝑖𝑘 , 𝑗𝑘) }, a list of pairs of loop indices that

potentially link.

// This function returns a list of pairs of loops that have overlapping

bounding boxes.

Function PotentialLinkSearch(Λ):
Boxes← {};
for 𝑖 ← 0 to |Λ | − 1 do

Boxes[𝑖]← ComputeBoundingBoxOfLoop(𝛾𝑖);

end
Tree← BuildBVH(Boxes);

𝐼 ← GetIntersectingBoxes(Tree, Tree);

𝑃 ← {(𝑖, 𝑗) : (𝑖, 𝑗) ∈ 𝐼 ∧ (𝑖 < 𝑗) };
return 𝑃 ;

3.3 Discretization
Given a set of input loops discretized into polynomial splines or

line segments and a set of overlapping loop pairs, our discretization

step computes a set of corresponding loops discretized into homo-

topically equivalent line segments, so that we can use the method

in the next stage (Section 3.4) to compute the exact linkage. See

Figure 5 for an illustration. While there are many ways to refine

(a) Input Curves (b) Check Bounding Boxes

(d) Output Final Polyline(c) Subdivide Splines

...

Fig. 5. Discretization Illustration: (a) Input curves with spline knots il-
lustrated. (b) Given this input, we compute bounding boxes (in 3D) and find
splines with overlapping boxes. (c) We refine each spline with an overlap-
ping box by subdividing it into two splines, and we repeat steps (b) and (c)
until no boxes overlap. (d) The result of discretization is a set of polylines
homotopically equivalent to the input.

spline segments into line segments [De Casteljau 1959; Micchelli

and Prautzsch 1989], many applications simply refine them to a

fixed tolerance. Our method is spatially adaptive and refines the

spline further only when curves from different loops pass closely

by each other. The discretization routine takes advantage of the fact

that if two convex volumes don’t overlap, then two curves bounded

by these volumes can be deformed into two line segments within

these volumes without crossing each other. Example pseudocode is

provided in Algorithm 3, and the routine is as follows.

Suppose every spline segment is parameterized in 𝑡 as p(𝑡). We

take multiple passes. At the beginning, all spline segments are un-

processed. In each pass, we start with a list of unprocessed spline

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

106:6 • AnteQu and Doug L. James

ALGORITHM 3: Discretization
Input :Λ = {𝛾𝑖 }, a list of looped curves, each of which can be a

cubic spline or a polyline;

𝑃 = {(𝑖𝑘 , 𝑗𝑘) }, a list of pairs of loops that potentially link.

Output : {Γ𝑖 }, a list of polylines corresponding to the curve list.

// This function homotopically refines input curves into polylines.

Function Discretize(Λ, 𝑃):
L← |Λ |;
UnprocessedSegments← {{}𝑖 }; // L sets of segments.

𝜉 ← the average coordinate magnitude;

𝜖 ← machine epsilon;

// Ensure all segments have finite, nonzero length.

parallel for 𝑖 ← 0 to 𝐿 − 1 do
Γ𝑖 ← {}; UnprocessedSegments[𝑖]← {};
foreach Curve segment 𝑠 ∈ 𝛾𝑖 do

𝑠 .ComputeBoundingBox();

if (DiameterOfBBox(𝑠) < 𝜖𝜉) then
return Error(“Input has zero-length segments.”);

end
UnprocessedSegments[𝑖].InsertSegment(𝑠);

end
end
Trees← {}; // One tree for each curve.

while (At least one UnprocessedSegments[𝑖] is not empty) do
parallel for 𝑖 ← 0 to 𝐿 − 1 do

// (i) Build an AABB-tree for each curve.

Trees[𝑖]←BuildBVH(UnprocessedSegments[𝑖]);

end
parallel for 𝑖 ← 0 to 𝐿 − 1 do

CurrentSegments← UnprocessedSegments[𝑖];

UnprocessedSegments[𝑖]← {};
foreach (𝑗 : ((𝑖, 𝑗) ∈ 𝑃 or (𝑗, 𝑖) ∈ 𝑃)) do

// (ii) Traverse BVHs, and (iii-v) subdivide

“under-refined” segments.

foreach (𝑠 : (𝑠 ∈ CurrentSegments and 𝑠 ∈
GetIntersectingBoxes(Trees[𝑖], Trees[𝑗]))) do

𝑟, 𝑡 ← SubdivideSegmentIntoHalves(𝑠);

𝑟 .ComputeBoundingBox();

𝑡 .ComputeBoundingBox();

if (DiameterOfBBox(𝑟 or 𝑡) < 𝜖𝜉) then
return Error(“Curves 𝑖 and 𝑗 intersect.”);

end
UnprocessedSegments[𝑖].InsertSegments(𝑟, 𝑡);

CurrentSegments.Exclude(𝑠);

end
end
// (vi-viii) Collect remaining segments into results.

Γ𝑖 ← Γ𝑖 ∪ CurrentSegments;

end
end
return {Γ𝑖 };

segments in each loop. For each loop, we (i) build a BVH of its unpro-

cessed spline segments. If any segment has almost zero length, we

exit with an error, as this indicates that either the input is corrupt or

the curves are nearly intersecting. In our implementation we set the

length threshold 𝜖 to the appropriate machine epsilon. For each loop

pair, we (ii) traverse the loops’ BVHs, and (iii) any two segments

from the two different loops with overlapping bounding volumes are

marked as “under-refined.” After all BVH pairs are traversed, we (iv)

split every “under-refined” segment into two spline segments, by

keeping the same coefficients but splitting the 𝑡 parameter’s domain

in halves, and (v) add them into a new list of unprocessed segments

for the next pass. Every segment not marked “under-refined” is (vi)

converted into a line segment with the same endpoints, and (vii)

added to a results list for the loop. Afterwards, we repeat this process

until no segments are unprocessed. At the end, we (viii) sort the line

segment list for each loop. In our implementation (Algorithm 3), all

steps are parallelized across loops, and so steps (ii–iii) are actually

ran twice for each loop pair: once from each loop in the pair.

To ensure the algorithm terminates if two loops nearly intersect,

we exit with an error if any segment length gets shorter than floating-

point epsilon times the average coordinate. In our examples, this

limit is reached in about 45 passes for double precision, and under

20 passes for single precision, with most of the later passes only

processing a small number of primitives. Exiting at this limit ensures

the next stage (§3.4) does not compute linking numbers on nearly

intersecting curves.

3.3.1 Proof that discretization is homotopically equivalent. For non-
intersecting input curves with polynomial spline segments, we show

that Algorithm 3 terminates when using tight AABBs. Also, we

show that if this algorithm terminates, it produces a homotopically

equivalent segmentation. These proofs can be found in Appendix A.

3.4 Linking Number Computation
Given a set of loops discretized into line segments, and a set of loop

pairs to check, we wish to compute their respective linkages and

output a linking matrix. We present several classes of methods here

based on different prior work, and our results and analysis section

(§4) will discuss the relative advantages of each method.

When running this stage on the CPU, we parallelize across the

list of potentially linked loop pairs and have each thread compute

its own linking number individually. We only use the parallelized

version of these methods if we have very few or only one loop

pair, which can arise when there are very few loops. For the GPU-

accelerated methods, we just iterate through the list of loop pairs

and launch the GPU kernels sequentially.

3.4.1 Method 1: Count Crossings (CC𝑎𝑛𝑛 and CC). The first ap-

proach is, given a pair of loops, find a regular projection and use it

to count crossings. We modify the implementation provided with

[Dey et al. 2013] for computing the linking number, and evaluate

two optimized methods (CC𝑎𝑛𝑛 and CC). Their projection code takes

three steps to heuristically find a regular projection: first, it uses

approximate nearest neighbors (ANN) to estimate a projection di-

rection away from all line-segment directions among the two loops,

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

Fast Linking Numbers for Topology Verification of Loopy Structures • 106:7

defining an initial frame whose 𝑧 axis will be the direction of projec-

tion. Next, it corrects the frame by rotating about the 𝑧 axis into the

direction such that all the projected segments would be oriented,

at minimum, as far away as possible from vertical (𝑦) or horizontal

(𝑥) directions. Thirdly, it rotates the frame about the 𝑦 axis so that

all the projected segments would be, at minimum, the farthest from

being degenerate (aligned with the 𝑧 axis). Each of these steps take

𝑂 (𝑁 log𝑁) time to sort the projected segment angles and perform

the maximin. Afterwards, they project the segments onto the XY

plane, and then perform an 𝑂 (𝑁𝑘𝑁𝑙) (where 𝑁𝑘 , 𝑁𝑙 are the num-

bers of segments in each input loop) brute-force intersection check

between all segment pairs. The intersection check uses 2D exact

line segment queries from CGAL [Brönnimann et al. 2021] and exits

with an error when degeneracies are detected.

While this procedure is sufficient for the loops generated from

the surface mesh analysis in [Dey et al. 2013], our linking number

computation must support larger inputs. We accelerated the inter-

section search by building a BVH for one of the two loops when their

average loop size exceeds 750 segments, and evaluating segments

from the other loop against this tree in parallel. We refer to this

modified method as CC𝑎𝑛𝑛 . The ANN call also introduces a large

overhead, so, after experimentation, we simply replace the initial

frame with a randomized frame. This greatly speeds up performance

for many examples, and we report the performance for this method

(which we call CC) as well as robustness tests in the results §4.1.2.

See Algorithm 4 for pseudocode.

ALGORITHM 4: ComputeLink: Counting Crossings

Input : {l𝑗 }, {k𝑖 }, the two polyline loops, each represented as a

list of vertices. Each vertex is a column vector.

Output :𝜆, the linking number

// This function computes the linking number between two closed

polylines by counting crossings and uses a BVH.

Function ComputeLink({l𝑗 }, {k𝑖 }):
𝜆 ← 0;

𝑁𝑘 ← |{k𝑖 } |;
// Find a regular projection frame.

𝐹 ← (x̂, ŷ, ẑ) ← GenerateRegularProjectionFrame({l𝑗 },
{k𝑖 });

// Rotate into the frame.

{l𝑗 } ← {𝐹𝑇 l𝑗 }; {k𝑖 } ← {𝐹𝑇 k𝑖 };
// Build a tree from the projected segments of {l𝑗 }.
tree← BuildBVH({((𝑙 𝑗𝑥 , 𝑙 𝑗𝑦), (𝑙 (𝑗+1)𝑥 , 𝑙 (𝑗+1)𝑦)) });
// Sum the orientations of all crossings

parallel for 𝑖 ← 0 to 𝑁𝑘 do
ProjectedSegment← ((𝑘𝑖𝑥 , 𝑘𝑖𝑦), (𝑘 (𝑖+1)𝑥 , 𝑘 (𝑖+1)𝑦)) ;
foreach 𝑗 ∈ tree.Query(ProjectedSegment) do

SegmentI, SegmentJ← (k𝑖 , k𝑖+1), (l𝑗 , l𝑗+1) ;
𝜆 ← 𝜆 + 0.5 Orientation(SegmentI, SegmentJ);

end
end
return 𝜆 ;

3.4.2 Method 2: Direct Summation (DS). This approach simply uses

the exact double-summation formula for Gauss’s integral from [Arai

2013] (which uses the signed solid angle formula [Van Oosterom

and Strackee 1983]), produced above as (4). That is, for loops 𝛾1, 𝛾2,

consisting of 𝑁𝑙 , 𝑁𝑘 line segments enumerated by 𝑗, 𝑖 respectively,

𝜆(𝛾1, 𝛾2) =
𝑁𝑘∑
𝑖

𝑁𝑙∑
𝑗

𝜆 𝑗𝑖 . (5)

See Algorithm 5 for a simple implementation. Unfortunately this

approach computes 2𝑁𝑙𝑁𝑘 arctangents for loops of sizes 𝑁𝑙 and 𝑁𝑘 ,

which is expensive for large loops.

When this is a single-threaded computation, the approach from

[Bertolazzi et al. 2019] removes all arctangents by using angle sum-

mations (counting negative 𝑥-axis crossings) instead. We use a mod-

ified version of their approach, and for robustness, we add a single

arctan at the end to compute the remainder after the angle summa-

tion. We only compute one triple scalar product per segment pair

because a · (b× c) = c · (d× a). See Appendix B.1 for details on how

we multithread this on the CPU and the GPU.

ALGORITHM 5: ComputeLink: Direct Summation.

Input : {l𝑗 }, {k𝑖 }, the two polyline loops, each represented as a

list of vertices. Each vertex is a column vector.

Output :𝜆, the linking number

// This function computes the linking number between two closed

polylines using the [Arai 2013] expression.

Function ComputeLink({l𝑗 }, {k𝑖 }):
𝜆 ← 0;

𝑁𝑙 ← |{l𝑗 } |; 𝑁𝑘 ← |{k𝑖 } |;
foreach int (𝑖, 𝑗) ∈ [0, 𝑁𝑘 − 1] × [0, 𝑁𝑙 − 1] do

a← l𝑗 − k𝑖 ;
b← l𝑗 − k𝑖+1;
c← l𝑗+1 − k𝑖+1 ;
d← l𝑗+1 − k𝑖 ;
𝑝 ← a · (b × c) ;
𝑑1 ← |a | |b | |c | + a · b |c | + b · c |a | + c · a |b | ;
𝑑2 ← |a | |d | |c | + a · d |c | + d · c |a | + c · a |d | ;
𝜆 ← 𝜆 + (atan2(𝑝,𝑑1) + atan2(𝑝,𝑑2))/(2𝜋) ;

end
return 𝜆;

3.4.3 Method 3: Fast Multipole Method (FMM). We can also use

external FMM libraries (provided by FMMTL [Cecka and Layton

2015] or FMM3D [Cheng et al. 1999]) to compute the linking integral

using fast summation approximations. In particular, if we represent

𝛾2 as a source current, the Fast Multipole Method on the Biot–Savart

integral will approximately evaluate, at each target point r, the field

f (r) = 1

4𝜋

∫
𝛾2

dr2 × (r − r2)
|r − r2 |3

. (6)

The final linking number is then 𝜆(𝛾1, 𝛾2) =
∫
𝛾1
f (r1) · dr1. In this

notation, loop 𝛾2 is the “source,” and 𝛾1 is the “target.”

Because many of these libraries do not directly support finite line-

segment inputs, we use segment midpoints for the source and target

points. After evaluation by the library, we compute a set of finite-

segment corrections for close segment pairs poorly approximated by

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

106:8 • AnteQu and Doug L. James

midpoint samples, and add the correction. While we already know

the exact evaluation expressions for line-segment pairs and could

have modified libraries to use them, our goal is to make no modi-

fications to existing FMM libraries that operate on point samples,

so that our results can be easily reproduced and improvements to

FMM libraries on newer hardware can be easily incorporated. This

is why we perform post-evaluation correction rather than directly

modify the FMM kernels and tree building structures.

Given the aforementioned loop discretizations of 𝛾1, 𝛾2 in the

direct evaluation section, denote the midpoint of each line segment

as r𝑗 or r𝑖 , respectively, and the displacement vector (difference

of endpoints) as s𝑗 , s𝑖 , respectively. FMMTL directly provides a

Biot–Savart implementation, so we simply have to pass in the line-

segment displacements s𝑖 as the sources, with positions r𝑖 , and
FMMTL computes the fields f𝑗 = f (r𝑗) at positions r𝑗 .

The linking number can then be computed from the field f𝑗 using

𝜆(𝛾1, 𝛾2) =
∑
𝑗

s𝑗 · f𝑗 . (7)

To reduce the duplicate work of building the FMM trees, we batch

evaluation points for each loop. That is, given source loop 𝛾𝑖 , we

concatenate the target evaluation points 𝑟 𝑗 for all target loops to

compute 𝐹 𝑗 for all target loops, and then compute each linking-

number sum individually.

When a library does not provide a native Biot–Savart implemen-

tation, we can alternately pass in a list of three-vector sources {s𝑖 }
into a Laplace FMM. The gradient output gives us Eq. (6), except

with an outer instead of a cross product. The output is a 3× 3 tensor
𝐶 𝑗 =

∑
𝑖 s𝑖 ⊗ ∇𝐺 (r𝑗 , r𝑖) at each evaluation point r𝑗 , and we can

simply grab the field f𝑗 from the definition of cross product:

f𝑗 = (𝐶 𝑗23 −𝐶 𝑗32,𝐶 𝑗31 −𝐶 𝑗13,𝐶 𝑗12 −𝐶 𝑗21). (8)

After the FMM library computation, we add a finite-segment

correction, because we passed in our line segments as point sources

and targets. We pick a distance ratio 𝛽 and apply this correction to

all segment pairs that are less than 𝛽 (𝑙1 + 𝑙2)/2 apart, where 𝑙1, 𝑙2 are
their segment lengths. Specifically, before the FMM calls we (i) build

a bounding volume for each segment, and (ii) dilate each bounding

volume by 𝛽𝑙/2, where 𝑙 is the segment length. We then (iii) build

a BVH of segment bounding volumes for each loop. For any loop

pair, (iv) traverse their BVH trees, and (v) accumulate the difference

between expression (4) and its approximation (2) for every pair

of overlapping segment bounding volumes. We then (vi) add this

correction to the original FMM result. In our implementation, we

parallelize steps (i–iii) by loop and steps (iv–v) by loop pair, with a

reduction at the end. We used a finite-segment correction because

the correction is faster to compute in practice than using denser

sample points along each segment for the FMM input; in our results

in §4, the correction takes a small fraction (< 1/8) of the runtime.

3.4.4 Method 4: Barnes–Hut (BH). Similar to [Barill et al. 2018],

simple Barnes–Hut trees [Barnes and Hut 1986] can be sufficient for

approximately evaluating the integral using fast summation without

the overhead of the full FMM. For each loop pair, the FMM computes

a field at every “target” point; however, we only need a single scalar

overall. Since each loop can participate in many loop pairs, we can

instead precompute a tree for each loop. Then for each loop pair, we

traverse both trees from the top down using Barnes–Hut; this can

save effort especially when the loops do not hug each other closely

and multiple loop pairs use the same target loop.

The Barnes–Hut algorithm takes advantage of a far-field multi-

pole expansion. Given two curves𝛾1, 𝛾2, parameterize𝛾1 as r1=r1 (𝑠)
and 𝛾2 as r2 = r2 (𝑡), and denote 𝑑r1/𝑑𝑠 and 𝑑r2/𝑑𝑡 by r′

1
and r′

2
. Sup-

pose also that we are only integrating the portions of 𝛾1 near r̃1,
and the portions of 𝛾2 near r̃2. Also, let ∇ denote differentiation

with respect to r2 (note that ∇r1𝐺 is just −∇r2𝐺), ⊗ denote a tensor

(outer) product, and · denote an inner product over all dimensions.

Taylor expanding (1) with respect to r1 and r2, we have

𝜆 = −
∫

d𝑠 d𝑡 (r′
1
× r′

2
) · ∇𝐺 (r1, r2) . (9)

𝜆 = −
∫

d𝑠 d𝑡

[
(r′
1
× r′

2
) · ∇𝐺 (r̃1, r̃2)

+ ((r′
1
× r′

2
) ⊗ (−(r1 − r̃1) + (r2 − r̃2))) · ∇2𝐺 (r̃1, r̃2)

+ 1

2

((r′
1
× r′

2
) ⊗ (−(r1 − r̃1) + (r2 − r̃2)) ⊗ (−(r1 − r̃1) + (r2 − r̃2)))

· ∇3𝐺 (r̃1, r̃2) +𝑂 (|r̃1 − r̃2 |−5)
]
. (10)

Expanding (10) and applying some algebra, every term can be

split into a product of two separate integrals, one for the r1 factors
and one for the r2 factors. These integrals, known as moments, can

be precomputed when constructing the tree. For each node on both

curves, we precompute the following moments:

c𝑀 =

∫
r′ d𝑠, (11)

𝐶𝐷 =

∫
r′(r − r̃)𝑇 d𝑠, (12)

𝐶𝑄 =

∫
r′ ⊗ (r − r̃) ⊗ (r − r̃) d𝑠 . (13)

Having just the c𝑀 moment at each node is sufficient to give us the

first term in (10). Adding the 𝐶𝐷 and 𝐶𝑄 moments gives us the sec-

ond and third terms respectively. The derivatives of 𝐺 (r̃1, r̃2), how
we compute these moments, and how we parallelize the Barnes–Hut

on the CPU and GPU (using the Barnes–Hut N-Body implementa-

tion from [Burtscher and Pingali 2011]) are in Appendix B.2.

We set a 𝛽 tolerance parameter, similar to most Barnes–Hut algo-

rithms, to distinguish between the near field and the far field: two

nodes at locations p and q are in the far field of each other if |p − q|
is greater than 𝛽 times the sum of the bounding-box radii of the two

nodes. Starting from both tree roots, we compare their bounding

boxes against each other. If the nodes are in the far field, we use

the precomputed moments and evaluate the far-field expansion;

otherwise, we traverse down the tree of the larger node and check

its children. If both nodes are leaves, we use the direct arctangent

expression (4). See Algorithm 6 for a summary.

In our implementation, we first run Barnes–Hut with the second-

order expansion in (10) (using all three terms) with 𝛽init = 2. Unlike

other problems that use Barnes–Hut, the linking number certificate

requires the same absolute error tolerance, regardless of the mag-

nitude of the result. In large examples, some regions can induce a

strong magnetic field from one loop on many dense curves from the

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

Fast Linking Numbers for Topology Verification of Loopy Structures • 106:9

ALGORITHM 6: ComputeLink: Barnes–Hut

Input : tree1, tree2, the root nodes of the two trees, with r the
node’s center, 𝑅 the bounding box radius, and c𝑀 ,𝐶𝐷 ,𝐶𝑄

the moments, precomputed at each node.

Output :𝜆, the linking number

// This function computes the linking number between two closed

polylines using the Barnes–Hut algorithm with a quadrupole

far-field expansion.

Function ComputeLink(tree1, tree2):
if (|tree1.r−tree2.r | > 𝛽 (tree1.𝑅+tree2.𝑅)) then

return FarFieldEvaluation(tree1, tree2); // Use (10)

else if (tree1 and tree2 have no children) then
// Use (4)

return DirectEvaluation(tree1.Segment, tree2.Segment);

else if (tree1.𝑅 > tree2.𝑅 and tree1 has children) then
return

∑
𝑐 ComputeLink (tree1.child[𝑐], tree2);

else
return

∑
𝑐 ComputeLink (tree1, tree2.child[𝑐]);

end

other loop, resulting in a very large integrand. Our implementation

therefore uses an error estimate based on the next-order expansion

term to set a new 𝛽 for a second evaluation if necessary. The esti-

mate is accumulated at each far-field node pair and reported after

the evaluation. The new 𝛽𝑡 is given by

𝐸estimate = 𝑘
∑

(𝑖, 𝑗) ∈far-field node pairs

|r|−5 (𝑅𝑖 |c𝑗𝑀 |∥𝐶𝑖𝑄 ∥

+ 𝑅 𝑗 |c𝑖𝑀 |∥𝐶 𝑗𝑄 ∥ + 3(∥𝐶𝑖𝐷 ∥∥𝐶 𝑗𝑄 ∥ + ∥𝐶𝑖𝑄 ∥∥𝐶 𝑗𝐷 ∥)),
(14)

𝛽𝑡 =

(
𝐸estimate

𝐸target

)
1/4

𝛽init . (15)

Here r = r̃𝑗 − r̃𝑖 , 𝑅 is the bounding-box radius at that node, and

𝑘 is a constant. If 𝛽𝑡 > 𝛽init, then it reruns Barnes–Hut using the

second-order expansion and 𝛽 = min(𝛽𝑡 , 𝛽max).

4 RESULTS AND ANALYSIS
We now compare the many aforementioned methods on several

benchmarks and applications. Please see the supplemental video for

all animation results.

4.1 Experiments and Verification
We perform all our experiments on a single 18-core Intel

®
Xeon

®

CPU E5-2697 v4 @ 2.30GHz with 64GB of RAM, and the GPU ver-

sions are evaluated on an NVIDIA GeForce GTX 1080. In Table 1,

we evaluate the methods on inputs with varying numbers of loops,

loop sizes, and loop shapes, and report runtimes and accuracies of

the linkage values. For CPU Barnes–Hut, we used 𝛽init=2, 𝛽max=10,

and 𝐸target=0.2. We chose 𝛽init so that the absolute errors were well

below 10
−2

for most examples. For Barnes–Hut on the GPU, since

we only evaluated up to dipole moments with no error estimation,

we used 𝛽 = 4 if𝑁1𝑁2 < 10
8
and 𝛽 = 16 otherwise. We also included

the runtime and accuracies achieved using direct summation, the

FMMTL library [Cecka and Layton 2015; Cheng et al. 1999], and the

Fig. 6. Large-Input Stress Tests: Synthetic examples were generated for
(Top Left) DNA-like double-helix ribbons, (Top Right) thick square links,
(Bottom Left) tori, and (Bottom Right) woundballs, of variable sizes. The
“thick square links” example has 𝐿2/4 links each with 𝜆 = 1, and the torus
has a single 𝜆 equal to the product of the number of toroidal periods in the
green loop and poloidal periods in the blue loop. We also generated a 𝜆 = 0

torus where both loops simply alternate directions every period, and it also
has 2 more larger copies of the blue loop. The woundball has two similar
concentric spherical curves, one winding a ball half the size of the other,
and a parameter 𝜈 indicating the number of times each curve crosses the
North pole.

modified count-crossings method from [Dey et al. 2013] accelerated

with parallelism and a BVH. The number of discretized line seg-

ments for each input is listed in Table 2. In most cases, Discretization

did not significantly increase the segment count (The exception is

the chevron 3 × 3, which uses a special procedure defined in §4.3.5

where each curve participates in two virtual loops.).

In general, the Counting Crossings (CC) and the two Barnes–Hut

(BH) implementations give the fastest runtimes, with the CC, BH,

and BHG all taking under 2 seconds for all examples shown in the

video (first 11 rows of Table 1). As a result, we believe either a CC

or a BH method is performant enough for most applications.

The GPU implementations perform best when they have very

few, or one, pairs of large loops to evaluate, and this can be seen in

the ribbon, 𝜆 = 10
6
torus, and low-frequency (low 𝜈) woundball. In

particular, the smaller double-helix ribbons (𝑁𝐼=200000) examples

illustrate that the GPU Direct Summation (DS) is a 370× speedup
over the CPUDS, and both DS implementations have very little error

(mostly under 10
−5

for the single-precision GPU implementation).

The Barnes–Hut CPU implementation benefits from traversing two

trees, a quadrupole expansion, as well as error estimation, allow-

ing it to perform almost as well as the BH GPU on a wide range

of examples that involve more than one loop pair. However, both

Barnes–Hut implementations suffer when the segment lengths are

relatively long (compared to the distance between curves), which is

true in the higher-𝜈 woundball (a higher 𝜈 has longer segments in

order to traverse the ball more times), because their limited far-field

expansion requires a relatively high 𝛽 . This effect is worse for the

BH GPU on the high-𝜈 woundball, which is slower than the BH

CPU here because our GPU version only implements monopole

and dipole terms and thus requires an even higher 𝛽 to achieve the

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

106:10 • AnteQu and Doug L. James

Table 1. Linkage Computation for Various Inputs: In this table, 𝑁𝐼 is the total number of input curve segments, 𝐿 is the number of input loops, and 𝑃 is
the computed number of potentially linked loop pairs. The first 11 models correspond to animated results shown in the supplemental video, and the rest are
stress tests depicted in Fig. 6. The sweater and glove models originate from [Yuksel et al. 2012], with “Sweater” referring to “sweater flame ribbing.” “PLS Time”
is the Potential Link Search Time and “Dscr Time” is the Discretization time; DS is direct summation; CC𝑎𝑛𝑛 and CC for counting crossings with ANN and
randomized direction initialization, respectively; BH for Barnes–Hut, and FMM for Fast Multipole Method (using FMMTL with batched target points; FMM3D
is slower in almost all cases). DSG and BHG run the DS and BH, respectively, on the GPU. A “N/A” indicates the run took longer than a half hour or did not fit
in memory. 𝜆 indicates the linkage between curves in a model, and 𝜈 is a woundball parameter explained in Fig. 6.
∗ For this example, FMMTL failed, and this is the FMM3D runtime instead.
† These used 𝛽 = 40, instead of 𝛽 = 16 normally used for large input. (The GPU BH only evaluates up to dipole moments, requiring high 𝛽 for large input.)

Linkage Computation for Various Input, Using Various Methods (All Times in [s])

Model 𝑁𝐼 𝐿 𝑃
PLS Dscr. Linking Number Matrix Compute Times Abs. Error

Time Time DS CC𝑎𝑛𝑛 CC BH FMM DSG BHG BH BHG FMM

Alien Sweater (Initial) 139506 146 1335 0.013 0.059 11.1 12.6 0.34 0.32 1.09 0.63 0.27 3E-3 2E-3 1E-3

Alien Sweater (Final) 139506 146 2426 0.017 0.050 13.9 22.4 0.38 1.18 1.61 1.01 0.63 3E-3 8E-4 1E-3

Sheep Sweater 729628 549 4951 0.024 0.152 169 95.5 0.85 1.31 5.85 4.34 0.96 2E-3 5E-3 3E-3

Sweater 271902 253 2985 0.015 0.120 29.3 33.0 0.29 0.74 2.33 1.43 0.56 3E-3 2E-3 9E-4

Glove 58537 70 1022 0.012 0.046 2.71 8.49 0.10 0.14 0.56 0.35 0.16 2E-3 2E-3 4E-4

Knit Tube (Initial) 18228 39 233 0.012 0.032 0.21 1.01 0.07 0.05 0.09 0.02 0.08 4E-3 9E-4 1E-3

Knit Tube (Final) 18228 39 180 0.012 0.082 0.30 1.03 0.06 0.08 0.11 0.30 0.12 6E-3 3E-4 3E-3

Chainmail (Initial) 211680 14112 18781 0.028 0.070 0.04 1.85 0.03 0.09 0.10 1.20 N/A 1E-3 N/A 5E-4

Chainmail (Final) 211680 14112 61417 0.056 0.086 0.11 6.30 0.07 0.15 0.17 3.91 N/A 3E-4 N/A 7E-4

Chevron 3 × 3 11741 32 58 0.013 0.049 0.19 0.44 0.02 0.07 0.06 0.02 0.03 5E-3 2E-4 1E-3

Rubber Bands 51200 1024 20520 0.018 0.035 0.23 7.99 0.05 0.12 0.16 1.11 1.87 7E-4 2E-5 5E-4

Double Helix Ribbon 𝜆=10 200000 2 1 0.018 0.076 177 5.60 0.06 0.15 0.34 0.48 0.02 7E-3 1E-3 1E-4

Double Helix Ribbon 𝜆=103 200000 2 1 0.016 0.112 177 1.82 0.07 1.62 0.55 0.48 0.03 0.22 7E-2 0.37

Double Helix Ribbon 𝜆=10 2E7 2 1 0.465 6.816 N/A 131 8.62 11.8 N/A N/A 2.63
†

3E-2 5E-4 N/A

Double Helix Ribbon 𝜆=103 2E7 2 1 0.441 6.816 N/A 118 9.51 31.3 N/A N/A 5.30
†

0.17 0.15 N/A

Thick Square Link 500000 1250 4.1E5 0.054 0.146 161 N/A 31.1 6.83 37.6 26.4 23.2 1E-3 6E-4 1E-4

Thick Square Link 4E6 5000 6.4E6 0.531 1.874 N/A N/A 105 145 830 1844 N/A 2E-3 N/A 2E-4

Torus 𝜆=106 2E7 2 1 0.456 7.027 N/A 100.3 9.30 13.9 22.2 N/A 4.94 5E-3 6E+2 9E-4

Torus 𝜆=0 4E7 4 6 0.519 7.698 N/A N/A 55.1 18.3 N/A N/A N/A 3E-3 N/A N/A

Woundball 𝜈 =103 1E6 2 1 0.048 0.387 N/A 6.93 0.55 0.68 1.32 12.0 0.14 6E-2 1E-2 2E-5

Woundball 𝜈 =104 2E6 2 1 0.056 0.756 N/A 43.9 7.96 15.3 5.19
∗

47.7 90.0 1E-2 5E-4 7E-6

Table 2. Discretization Results: This table shows, for the first 10 models in
Table 1, how many line segments each model was discretized into. All other
models were input as line segments separated enough that Discretization
did not change the segment count. Most of these 10 models ended with
only a little more than one segment per control point, with the exception of
the twisted knit tube and the chevron pattern.

Number of Discretized Segments for Various Inputs

Model 𝑁𝐼 𝑁𝐷

Alien Sweater (Initial) 139506 158708

Alien Sweater (Final) 139506 143228

Sheep Sweater 729628 801447

Sweater 271902 296813

Glove 58537 65938

Knit Tube (Initial) 18228 18941

Knit Tube (Final) 18228 27625

Chainmail (Initial) 211680 211680

Chainmail (Final) 211680 212552

Chevron 3 × 3 11741 32804

same accuracy. In contrast, the FMM excels on the high-𝜈 wound-

ball, giving the fastest performance, because it uses arbitrary-order

expansion terms as needed. Both BH and FMM suffer from hard-

to-predict absolute errors, especially in examples with high 𝜆. In

general, CC appears to perform the best in the most scenarios, and

because it tabulates an integer, it has 0 error in the runs we observed.

4.1.1 Barnes–Hut 𝛽 behavior: We illustrate how varying 𝛽 can

impact accuracy in Figure 7. The error appears to behave as 𝛽−3

for the first-order (dipole) expansion, whereas for the second-order

(quadrupole) expansion the error appears to behave as 𝛽−4.

4.1.2 Numerical conditioning and robustness: For direct summation

(and lowest-level evaluations of the tree algorithms), we use the

expression from Arai [2013] (reproduced in §2.1 as (4)), because it

is well defined over the widest range of input. In particular, it is

only singular when the two line segments intersect or collinearly

overlap, or if either has zero length. Our method already detects

and flags these conditions in the Discretization step. Furthermore,

the signed solid angle formula is widely used due to its simplicity

and stability [Van Oosterom and Strackee 1983].

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

Fast Linking Numbers for Topology Verification of Loopy Structures • 106:11

Average Barnes–Hut Error Versus 𝛽

1 2 4 8 16 32

10 −6

10 −4

10 −2

10 0

10 2

Er
ro

r

Ribbon Quad
Ribbon Dip
Sweater Quad
Sweater Dip

−4 Reference
−3 Reference

Fig. 7. Barnes–Hut Accuracy Versus 𝛽 : We plot the (L1) average error
versus the Barnes–Hut 𝛽 parameter for the double-helix DNA ribbon and
the alien sweater examples. We also show this with only dipole (“Dip,” first-
order) terms versus having the quadrupole (“Quad,” second-order) terms as
well. The error appears to drop off as 𝛽−3 using the dipole expansion and as
𝛽−4 for the quadrupole expansion.

All methods compute using double precision when implemented

on the CPU, while the GPU implementations use single precision.

To learn more about the robustness of the projection in the count-

crossings (CC) method, we tested it, using random initial frames

before the rotation step, 50,000 times on the compressed chainmail

(final), and 5,000 times on the alien sweater (initial), and, based on

their 𝑃 values in Table 1, this sums up to 3.08 billion projections. If

our implementation encounters a degeneracy, the method would

fail and exit. For each loop pair, we recomputed the linking number

with a new projection every trial, and it completed with the correct

result every time. We also tested it with very large inputs such as

the dense tori and woundballs (Fig. 6), which span a large range of

angles, and the linking number was successfully computed, albeit

the crossings computation was very slow for the unlinked 𝜆 = 0

torus. This robustness is likely because degeneracies are unlikely

to appear with this input size in double precision. That said, we do

not guarantee with our implementation that it is able to find a non-

degenerate, regular projection on every input. If this is a concern,

the Gauss summation implementations such as the Barnes–Hut

algorithm, which do not require a projection, can also be used on

most inputs with comparable speed.

4.2 Performance
For all results shown in the video (first 11 rows of Table 1), PLS and

Discretization took under 200 ms combined. For the third stage, we

plot the runtimes versus discretized model size in Figure 8. Both the

count-crossings and Barnes–Hut methods significantly outperform

direct summation, and also outperform FMM in most cases. We also

tested four classes of large input as stress tests; see Fig. 6 for an

illustration.

4.2.1 Usual-case theoretical estimates: Similar to many tree-based

methods, the performance depends on the distribution of input, and

certain inputs can severely degrade performance. For inputs with

Linking Number Computation Runtimes vs. Discretized Model Size

50000 100000 200000 500000 1000000

N Discretized Segments

10 −2

10 −1

10 0

10 1

10 2

Ru
nt

im
es

 [s
] DS

CC
BH
FMM

Fig. 8. Runtimes for Linking Number Computation: This plots the run-
time in ms against the discretized model size, for the examples shown in
the video (first 11 rows of Table 1 plus a few reparameterized models). Be-
cause the models vary in shape complexity, number of loops, and number
of segments per loop, the input size cannot be used to perfectly predict the
runtime.

relatively “short” segments (i.e. segments are short compared to the

spacing between curves) and uniformly sized loops, we expect PLS

to take 𝑂 (𝐿 log𝐿) time and Discretization to take 𝑂 (𝑁 log𝑁) time,

where 𝐿 is the number of loops and 𝑁 is the number of input seg-

ments. The Barnes–Hut, Count-Crossings, and FMM computations

are all expected to take𝑂 (𝑃𝑁𝐿 log𝑁𝐿) time, where 𝑃 is the number

of potentially linked pairs and 𝑁𝐿 approximates the number of seg-

ments per loop (FMM is not linear in 𝑁𝐿 because we compute the

finite-segment correction, although for all the inputs we reported

in Table 1, the finite-segment correction took under 1/8 of the FMM

runtime). For chainmail, the total simplifies to 𝑂 (𝐶 log𝐶) where
𝐶 is the number of rings, and for most stitch-mesh knit patterns

where each row interacts with a small number of other rows, this

simplifies to 𝑂 (𝑅 log𝑅 + 𝑁 log𝑁𝐿) where 𝑅 is the number of rows.

However, if segments are extremely long compared to the dis-

tance between curves, which can happen after a simulation has

destabilized, every algorithm can slow down to𝑂 (𝑁 2) performance

to finish. This is where the early-exit approach can be a huge gain;

furthermore, if our method runs periodically during a simulation,

topology violations can be detected long before this occurs, as we

will show in the Knit Tube Simulation (Figure 13).

4.3 Applications
In this section we demonstrate the versatility of our method across

several applications. In most scenarios (except Example 4.3.1) we

first compute the linking matrix of the initial model, and then com-

pare it against the linking matrices of the deformed models.

4.3.1 Yarn model analysis: Many yarn-level models in graphics and

animation are represented as a set of closed curves; a major example

is themodels generated from StitchMesh [Yuksel et al. 2012]. Implicit

(and/or implicit constraint direction) yarn simulations solve smaller

systems when the model uses closed curves, and the model stays

intact without the requirement of pins. Our method can aid in the

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

106:12 • AnteQu and Doug L. James

Fig. 9. Yarn Model Analysis: We examine the “sweater flame ribbing”
yarn model from Stitch Mesh [Wu and Yuksel 2017; Yuksel et al. 2012],
which was provided in relaxed form. This model contains small yarn loops
to join rows with mismatched wale direction (Bottom Left, reproduced from
Figure 8 in [Yuksel et al. 2012]). Even with these loops, the entire stitch
mesh should have zero pairwise linkage between its yarn rows. We verify
the relaxed yarn model using our algorithm, and mark linkages in red (Top).
From this, we zoom in on one of the linkages, and find that the small green
loop (Bottom Right), which should topologically match the small green loops
in the bottom left figure, has only 3, rather than 4, curve segments passing
through it, indicating there was yarn pull-through during relaxation.

topology validation of these models, by computing a linking matrix

certificate before and after a deformation, whether the deformation

is a simulation, relaxation, reparameterization, or compression. In

addition, we can examine the integrity of input models from prior

work. In our examples we analyze four models from [Wu and Yuk-

sel 2017; Yuksel et al. 2012]
2
: the “alien sweater,” “sweater flame

ribbing,” “glove,” and the “sheep sweater,” which are provided after

a first-order implicit yarn-level relaxation. Stitches between rows

introduce zero pairwise linkage, and our method verifies whether

the relaxed models have valid stitches. We found that the “glove”

and the “alien sweater” have no pairwise linkages, indicating no

obvious issues, while the “sheep sweater” and “sweater flame rib-

bing” contain linkage violations. See Figure 9 for a violation in the

“sweater flame ribbing” model.

4.3.2 Reparameterizing and compressing yarn-level models: Our
methods can be used to verify the topology of yarn-level cloth

models following common processing operations. Spline reparame-

terization can be used to reduce the number of spline control points

prior to simulation, or afterwards for model export. Furthermore, it

is common to compress control point coordinates using quantization

for storage and transmission. Unfortunately such operations can

introduce topological errors, which limits the amount of reduction

2
Models downloaded from http://www.cemyuksel.com/research/yarnmodels

Compression Reparameterization

Fig. 10. Compression and Reparameterization of Detailed Yarn Mod-
els: (Left) We compress a sweater model down to 16-bit (Top Left) and 12-bit
(Bottom Left) precision by quantizing coordinates. Our algorithm verifies
that the 16-bit compression is valid, but highlights the loops that contain
topology violations in the 12-bit compression. (Right) If we aggresively re-
sample the Catmull–Rom splines of the sheep sweater model to reduce the
number of control points from 729628 (Top Right) to 547264 (Bottom Right),
our method highlights violations in the latter.

Fig. 11. Embedded Deformation of Yarn-Level Models: A coarse single-
layer tetrahedral mesh (simulated by Houdini’s Vellum solver) is used to
place a yarn-level glove model on a surface using embedded deformation.
We verify that no topology changes are introduced by this deformation.

that can occur. Our method can be used to verify these reparameter-

ization and compression processes. Since large modifications of the

model may introduce multiple linking errors that could cancel each

other out, we leverage our methods’ speed to analyze a sweep of

the reparameterization/compression process to better detect errors.

See Figure 10 for results.

4.3.3 Embedded deformation of yarn-level models: It is computa-

tionally appealing to animate and pose yarn-level models using

cheaper deformers than expensive yarn-level physics, but also re-

tain yarn topology for visual and physical merits. To this end, we

animated the yarn-level glove model using embedded deformation

based on a tetrahedral mesh simulated using Houdini 18.5 Vellum.

For the modest deformations shown in Figure 11 the yarn-level

model retains the correct topology throughout the animation, and

therefore can be used for subsequent yarn-level processing.

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

http://www.cemyuksel.com/research/yarnmodels

Fast Linking Numbers for Topology Verification of Loopy Structures • 106:13

Fig. 12. Verification of Sweater Drop Simulation: Our method detected that (Left) a preview implicit simulation with larger step sizes failed to preserve
yarn topology, while (Right) another simulation with smaller steps maintained it.

Fig. 13. Verification of Tube Twist Simulation: Twisting cloth is a com-
mon stress test for a simulator, and in this image, the end rows (green) are
twisted using a stiff spring until breakage. Our method is able to cheaply
detect topology violations in the model (red) over a thousand steps before
the simulation visually explodes.

4.3.4 Implicit yarn-level simulation: Simulation of yarn, as in [Kaldor

et al. 2008], is challenging because of the large number of thin and

stiff yarns in contact, and the strict requirement to preserve topol-

ogy (by avoiding yarn–yarn “pull through”), both of which can

necessitate small time steps. For large models, these relaxations

or simulations can take hours or days, and there may not be an

expert user in the loop to visually monitor the simulations every-

where. While sometimes penalty-based contact forces will cause

the simulation to blow up, alerting the user to restart, at other times

pull-through failures can be silent and lead to incorrect results.

Our method is useful for validating yarn models during yarn-level

relaxation, when large forces can cause topological changes, as well

as large-step, preview implicit simulations of yarn-level models. We

use implicit integration [Baraff and Witkin 1998; Bergou et al. 2010;

Kaldor et al. 2008; Leaf et al. 2018] to step through the stiff forces,

which enables larger timesteps at the risk of introducing topology

errors; our PCG implementation uses Eigen [Guennebaud et al. 2010]

and falls back to the SYM-ILDL package [Greif et al. 2015] when the

energy gets too nonconvex [Kim 2020]. In Figure 12, we simulate the

alien sweater model from [Yuksel et al. 2012] using larger implicit

steps (1/2400 s) for a preview simulation as well as smaller implicit–

explicit step sizes (1/6600 s). Our method detects and marks the yarn

loops that have engaged in pull through violations in the former,

and validates that the latter maintains its topology. In Figure 13, we

perform a common stress test where we grab a knitted cylindrical

tube by the ends and wring (twist) the ends in opposing directions

until the simulation breaks. Even in this simulation with an obvious

failure, our method is still useful because it detects the first linkage

violations over a thousand steps before the simulation destabilizes.

In all of these simulations, the runtime of our method is small

compared to the runtime of the simulation: we only run our method

once every animation frame, whereas the simulation takes dozens

of substeps per frame.

4.3.5 Open-curve verification: chevron 3× 3 stitch pattern relaxation:
Our method can be applied not only on closed loopy structures,

but also on finite, open curves in specific circumstances, to detect

topology violations between different curves. In particular, this

notion is well defined when the curves form a braid, that is, when

the curves connect fixed points on two rigid ends, and the rigid ends

remain separated. This can be useful for verifying the relaxation of

a yarn stitch pattern, if the top and bottom rows are either cast on

or bound off, and the ends of each row are pinned to two rigid ends,

turning the stitch pattern into a braid.

When the curves form a braid, we can connect them using vir-

tual connections to form virtual closed loops (see Figure 14). We

propose a method to automatically form virtual connections which

we include in Appendix C. To test this, we use a stitch pattern that

repeats a chevron three times horizontally and vertically (3 × 3).

We apply our proposed method to the chevron 3 × 3 to verify the

relaxation of the stitch pattern (see Figure 15). In the video, we also

detect an early pull through in another relaxation with larger steps,

hundreds of steps before it becomes visually apparent.

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

106:14 • AnteQu and Doug L. James

α1

α2

α3

α4

α5
α5

α3

α4

α2

α1

(a) Input Curves
α1

α2

α3

α4

α5
α5

α3

α4

α2

α1
γ2

γ1

γ3

γ4

γ5

γ1

γ5

γ4

γ3

γ2

(b) Virtual Loops

Fig. 14. Verification of Open Curves Attached to Rigid Ends: We can
automatically validate curve topology for open curves with ends that are
fixed with respect to each other. In this illustration, when we have five
open curves, 𝛼1 to 𝛼5, we can form five virtual closed loops, 𝛾1 to 𝛾5 by
attaching every two curves into a loop, with a virtual connection inside each
end volume: 𝛾𝑖 =𝛼𝑖 ∪ 𝛼𝑖+1 for 𝑖 =1, 2, 3, 4 and 𝛾5 =𝛼5 ∪ 𝛼1. As every curve
participates in two loops, we modify PLS to exclude pairs of loops that share
curves, and then generate the certificate. During deformation, as long as no
curve crosses the virtual end connections and no virtual connection crosses
each other (this is guaranteed by rigid ends), the certificate will detect pull
throughs. See the chevron stitch pattern (Fig. 15), for example.

Fig. 15. Verification of Chevron Stitch Pattern During Relaxation:
(Top) We attach a 3 × 3 chevron stitch pattern between two rigid bars and
relax the pattern while slowly pulling the bars apart. Using our procedure
to verify open curves attached to rigid ends, we verify that the relaxation
preserves stitch topology. (Bottom) In this image, the virtual connections
are shown, exaggerated outside their volumes, as green wires extending to
the left and right. See the supplemental video for an alternate relaxation
with an early pull through detected in the process. The violation there is
detected in the first few steps, while the pull through only becomes visually
apparent after hundreds of steps.

4.3.6 Chainmail simulation: In Figure 1, we simulated a fitted Kusari

4-in-1 chainmail garment with 14112 curved rings and 18752 links.

Inspired by the 3D printing example from [Mazhar et al. 2016; Tasora

et al. 2016], we simulated packing the garment into a small box

for 3D printing using the Bullet rigid-body solver in Houdini 18.5.

Without exceptionally small timesteps, the solver destroys links and

creates spurious others as shown in Figure 1 and supplemental ani-

mations. By using varying numbers of substeps, we could illustrate

linkage violations in Figure 1 (b) and (c), and certify that the result

in (d) maintains its topological integrity, which would be otherwise

difficult to ascertain until after expensive 3D printing.

4.3.7 Rubber band simulation: Errors in collision and contact han-

dling can result in previously unlinked loops becoming entangled,

and thus necessitate more accurate but expensive simulation pa-

rameters. We demonstrate this scenario by the simulation of 1024

unlinked rubber bands dropped onto the ground in Figure 16. Our

methods can be used to monitor and detect topological errors in-

troduced by low-quality simulation settings (too few substeps), and

inform practitioners when to increase simulation fidelity.

4.3.8 Ribbons and DNA:. Some applications in computational bi-

ology require the computation of linking numbers (and related

quantities such as writhe) for extremely long DNA strands, which

can change their linking numbers as a result of topoisomerase,

thereby producing interesting effects such as super-coiling [Clau-

velin et al. 2012]. For computational purposes, the strands are essen-

tially ribbons with two twisted double-helix curves along each edge.

While existing approaches typically only consider direct evalua-

tion methods for relatively small models, e.g., [Sierzega et al. 2020],

we demonstrate performance on very long and closely separated

closed ribbons (akin to circular DNA) depicted in the top left of

Fig. 6. Results shown in Table 1 illustrate excellent performance

by several of the algorithms; most notably, the GPU Barnes–Hut

approach finishes 200,000-segment ribbons in under 30 milliseconds

and, with sufficiently high 𝛽 , finishes 20-million-segment ribbons

in 5.3 seconds or faster; combined with the first two stages, our

method takes up to 157 ms to compute the linking matrix for the

former ribbon and 12.6 seconds for the larger ribbon.

5 CONCLUSIONS
We have explored practical algorithms and implementations for

computing linking numbers for efficient monitoring and verifica-

tion of the topology of loopy structures in computer graphics and

animation. Linking-number certificates provide necessary (but not

sufficient) conditions to ensure the absence of topology errors in

simulation or processing that would go undetected previously. We

hope that the community can benefit from these improved correct-

ness monitoring techniques especially given the many immediate

uses in graphics applications, e.g., yarn-level cloth simulation, that

have previously relied on linkage correctness but lacked practical

tools for verification.

By comparing multiple exact and approximate linking-number

numerical methods, and CPU and GPU implementations, we discov-

ered that several methods give accurate and fast results for many

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

Fast Linking Numbers for Topology Verification of Loopy Structures • 106:15

Fig. 16. Rubber Band Test: An initially unlinked set of 1024 rubber bands falls onto an incline then slides onto the floor, as simulated with hair-like strands in
Houdini’s Vellum solver. We verify that (for typical contact/constraint iterations) (Top) the loops avoid spurious linking using 20 substeps per frame, whereas
(Bottom) only 4 substeps per frame resulted in 322 linked rubber bands (shown in red).

types of problems, but alas there are no clear winners. Direct summa-

tion (DS) using exact formulae, although popular outside graphics

for its simplicity and accuracy, was uncompetitive with the other

methods for speed except for very small examples; GPU acceleration

of the double summation was competitive in some cases. Our CPU

parallel implementation of counting crossings (CC) was perhaps the

simplest and fastest method for many problems; it relies on finding

a suitable regular projection which is often cited as a weakness and

potential source of numerical problems, but we were unable to gen-

erate incorrect results with it in double precision. CPU Barnes–Hut

was a strong performer and competitive with CC in most cases, and

GPU-accelerated Barnes–Hut was the fastest on several of the very

largest examples, most notably for DNA ribbons. In some cases the

GPU method struggles with accuracy due to having only dipole

terms and single precision, and our GPU hardware and implemen-

tation were unable to store Barnes–Hut trees for large numbers

of small loops, e.g., chainmail, for which CC or DS did best. The

CPU-based Fast Multipole Method (FMM) was able to achieve high-

accuracy fast summations due to the increased number of multipole

terms, e.g., relative to Barnes–Hut, but it did not translate to beating

CPU Barnes–Hut in general.

5.1 Limitations and Future Work
There are several limitations of our approaches, and opportunities

for future work. While changes in the linking number between two

curves imply a change in topology, the same linking number does

not rule out intermediate topological events, e.g., two knit yarn loops

with 𝜆 zero could “pull through” twice during a simulation and still

have zero linkage at the end. Furthermore, collision violations can

occur without a topology change: for example, given a key ring with

three rigid keys, it is physically impossible for two adjacent keys

to swap positions, yet the topology would still be maintained after

a swap. Therefore, our approach can flag linking number changes,

but a passing certificate does not preclude other errors.

We use AABB-trees to find overlapping loop AABBs in Poten-

tial Link Search (PLS) and overlapping spline-segment AABBs in

Discretization, but tighter bounds than AABBs might reduce the

number of linking-number calculations and discretized segments

enough to provide further speedups.

We have considered linking numbers between closed loops and

virtually closed loops for fixed patterns, but many loopy structures

involve open loops, e.g., knittable yarn models [Guo et al. 2020;

Narayanan et al. 2018, 2019; Wu et al. 2018, 2019], periodic yarn-

level cloth patterns [Leaf et al. 2018], and hair, and it would be useful

to generalize these ideas for open and “nearly closed” loops, e.g., to

reason about “pull through” between adjacent yarn rows.

Topology checks could be closely integrated with simulations

and geometry processing to encourage topologically correct results

and enable roll-back/restart modes. Our proposed method with the

“early exit” strategy could be better optimized to aggressively verify

links before finishing PLS and Discretization on the entire model.

Finally, our GPU implementations and comparisons could be

improved by specialized implementations for linking-number com-

putations, all-at-once loop–loop processing instead of serial, better

memory management for many-loop scenarios, e.g., chainmail, and

also more recent hardware.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for the constructive and detailed

feedback. We thank Jonathan Leaf, Xinru Hua, Paul Liu, Gilbert

Bernstein, and Madeleine Yip for helpful discussions, and Steve

Marschner, Purvi Goel, and Jiayi Eris Zhang for proofreading the fi-

nal manuscript.We also thank Cem Yuksel for the stitchmesh source

code. Ante Qu’s research was supported in part by the National

Science Foundation (DGE-1656518). We acknowledge SideFX for

donated Houdini licenses and Google Cloud Platform for donated

compute resources. Mitsuba Renderer was also used to produce

renders. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

106:16 • AnteQu and Doug L. James

REFERENCES
Zin Arai. 2013. A rigorous numerical algorithm for computing the linking number of

links. Nonlinear Theory and Its Applications, IEICE 4, 1 (2013), 104–110.

David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’98). Association for Computing Machinery, New York, NY, USA, 43–54.

https://doi.org/10.1145/280814.280821

David Baraff, Andrew Witkin, and Michael Kass. 2003. Untangling Cloth. ACM Trans.
Graph. 22, 3 (July 2003), 862–870. https://doi.org/10.1145/882262.882357

Jernej Barbič and Doug L. James. 2010. Subspace Self-Collision Culling. ACM Trans. on
Graphics (SIGGRAPH 2010) 29, 4 (2010), 81:1–81:9.

Gavin Barill, Neil G. Dickson, Ryan Schmidt, David I. W. Levin, and Alec Jacobson.

2018. Fast winding numbers for soups and clouds. ACM Transactions on Graphics
(TOG) 37, 4 (2018), 1–12.

Josh Barnes and Piet Hut. 1986. A hierarchical O(N log N) force-calculation algorithm.

Nature 324, 6096 (1986), 446–449.
Julien Basch. 1999. Kinetic Data Structures. Ph.D. Dissertation. Stanford University,

Stanford, CA, USA. Advisor(s) Guibas, Leonidas J. AAI9943622.

Mitchell Berger. 2009. Topological Quantities: Calculating Winding, Writhing, Linking,

and Higher Order Invariants. Lecture Notes in Mathematics 1973 (03 2009). https:

//doi.org/10.1007/978-3-642-00837-5_2

Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun.

2010. Discrete Viscous Threads. ACM Trans. Graph. 29, 4, Article 116 (July 2010),

10 pages. https://doi.org/10.1145/1778765.1778853

Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun.

2008. Discrete Elastic Rods. ACM Transactions on Graphics (SIGGRAPH) 27, 3 (aug
2008), 63:1–63:12.

Gilbert Louis Bernstein and Chris Wojtan. 2013. Putting Holes in Holey Geometry:

Topology Change for Arbitrary Surfaces. ACM Trans. Graph. 32, 4, Article 34 (July
2013), 12 pages. https://doi.org/10.1145/2461912.2462027

Enrico Bertolazzi, Riccardo Ghiloni, and Ruben Specogna. 2019. Efficient computation

of linking number with certification. arXiv preprint arXiv:1912.13121 (2019).
Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust Treatment of Col-

lisions, Contact and Friction for Cloth Animation. In Proceedings of the 29th An-
nual Conference on Computer Graphics and Interactive Techniques (San Antonio,

Texas) (SIGGRAPH ’02). Association for Computing Machinery, New York, NY, USA,

594–603. https://doi.org/10.1145/566570.566623

Tyson Brochu, Essex Edwards, and Robert Bridson. 2012. Efficient Geometrically Exact

Continuous Collision Detection. ACM Trans. Graph. 31, 4, Article 96 (July 2012),

7 pages. https://doi.org/10.1145/2185520.2185592

Hervé Brönnimann, Andreas Fabri, Geert-Jan Giezeman, Susan Hert, Michael Hoffmann,

Lutz Kettner, Sylvain Pion, and Stefan Schirra. 2021. 2D and 3D Linear Geometry

Kernel. In CGAL User and Reference Manual (5.2.1 ed.). CGAL Editorial Board.

https://doc.cgal.org/5.2.1/Manual/packages.html#PkgKernel23

Martin Burtscher and Keshav Pingali. 2011. An efficient CUDA implementation of the

tree-based Barnes Hut N-body algorithm. In GPU Computing Gems Emerald Edition,
Wen mei W. Hwu (Ed.). Morgan Kaufmann, Boston, 75 – 92. https://doi.org/10.

1016/B978-0-12-384988-5.00006-1

Cris Cecka and Simon Layton. 2015. FMMTL: FMM Template Library A Generalized

Framework for Kernel Matrices. In Numerical Mathematics and Advanced Appli-
cations - ENUMATH 2013, Assyr Abdulle, Simone Deparis, Daniel Kressner, Fabio

Nobile, and Marco Picasso (Eds.). Springer International Publishing, Cham, 611–620.

Johnny T. Chang, Jingyi Jin, and Yizhou Yu. 2002. A practical model for hair mutual

interactions. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on
Computer animation. 73–80.

Hongwei Cheng, Leslie Greengard, and Vladimir Rokhlin. 1999. A Fast Adaptive

Multipole Algorithm in Three Dimensions. J. Comput. Phys. 155, 2 (1999), 468 – 498.

https://doi.org/10.1006/jcph.1999.6355

Nicolas Clauvelin, Wilma K. Olson, and Irwin Tobias. 2012. Characterization of the

Geometry and Topology of DNA Pictured As a Discrete Collection of Atoms. Journal
of Chemical Theory and Computation 8, 3 (2012), 1092–1107. https://doi.org/10.1021/

ct200657e

Paul De Casteljau. 1959. Outillages méthodes calcul. Andr e Citro en Automobiles SA,
Paris (1959).

Tamal K. Dey, Fengtao Fan, and Yusu Wang. 2013. An efficient computation of handle

and tunnel loops via Reeb graphs. ACM Transactions on Graphics (TOG) 32, 4 (2013),
1–10. Source code here: https://web.cse.ohio-state.edu/~dey.8/handle/ReebHanTun-

download/reebhantun.html.

Tamal K. Dey, Kuiyu Li, and Jian Sun. 2009. Computing handle and tunnel loops with

knot linking. Computer-Aided Design 41, 10 (2009), 730 – 738. https://doi.org/10.

1016/j.cad.2009.01.001

Herbert Edelsbrunner and Afra Zomorodian. 2001. Computing linking numbers of a

filtration. In Algorithms in Bioinformatics, Olivier Gascuel and Bernard M. E. Moret

(Eds.). Springer, Springer, Berlin, Heidelberg, 112–127.

Francisco R. Feito and Juan Carlos Torres. 1997. Inclusion test for general polyhedra.

Computers & Graphics 21, 1 (1997), 23 – 30. https://doi.org/10.1016/S0097-8493(96)

00067-2

F. Brock Fuller. 1978. Decomposition of the linking number of a closed ribbon: a problem

from molecular biology. Proceedings of the National Academy of Sciences 75, 8 (1978),
3557–3561.

Leslie Greengard and Vladimir Rokhlin. 1987. A fast algorithm for particle simulations. J.
Comput. Phys. 73, 2 (1987), 325 – 348. https://doi.org/10.1016/0021-9991(87)90140-9

Chen Greif, Shiwen He, and Paul Liu. 2015. SYM-ILDL: Incomplete LDL
T
Factorization

of Symmetric Indefinite and Skew-Symmetric Matrices. CoRR abs/1505.07589 (2015).

arXiv:1505.07589 http://arxiv.org/abs/1505.07589

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.

Leonidas Guibas, An Nguyen, Daniel Russel, and Li Zhang. 2002. Collision Detection

for Deforming Necklaces. In Proceedings of the Eighteenth Annual Symposium on
Computational Geometry (Barcelona, Spain) (SCG ’02). Association for Computing

Machinery, New York, NY, USA, 33–42. https://doi.org/10.1145/513400.513405

Runbo Guo, Jenny Lin, Vidya Narayanan, and James McCann. 2020. Representing

Crochet with Stitch Meshes. In Symposium on Computational Fabrication (Virtual

Event, USA) (SCF ’20). Association for Computing Machinery, New York, NY, USA,

Article 4, 8 pages. https://doi.org/10.1145/3424630.3425409

David Harmon, Daniele Panozzo, Olga Sorkine, and Denis Zorin. 2011. Interference-

Aware Geometric Modeling. ACM Trans. Graph. 30, 6 (Dec. 2011), 1–10. https:

//doi.org/10.1145/2070781.2024171

Edmond S.L. Ho and Taku Komura. 2009. Character Motion Synthesis by Topology

Coordinates. Computer Graphics Forum 28, 2 (2009), 299–308. https://doi.org/10.

1111/j.1467-8659.2009.01369.x

Edmond S.L. Ho, Taku Komura, Subramanian Ramamoorthy, and Sethu Vijayakumar.

2010. Controlling humanoid robots in topology coordinates. In 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems. 178–182. https://doi.org/

10.1109/IROS.2010.5652787

Libo Huang, Torsten Hädrich, and Dominik L. Michels. 2019. On the Accurate Large-

Scale Simulation of Ferrofluids. ACM Trans. Graph. 38, 4, Article 93 (July 2019),

15 pages. https://doi.org/10.1145/3306346.3322973

Geoffrey Irving, Joseph M. Teran, and Ronald Fedkiw. 2004. Invertible Finite Ele-

ments for Robust Simulation of Large Deformation. In Proceedings of the 2004 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (Grenoble, France)

(SCA ’04). Eurographics Association, Goslar, DEU, 131–140. https://doi.org/10.1145/

1028523.1028541

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust Inside-Outside

Segmentation Using GeneralizedWinding Numbers. ACMTrans. Graph. 32, 4, Article
33 (July 2013), 12 pages. https://doi.org/10.1145/2461912.2461916

Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating Knitted

Cloth at the Yarn Level. In ACM SIGGRAPH 2008 Papers (Los Angeles, California)
(SIGGRAPH ’08). Association for Computing Machinery, New York, NY, USA, Article

65, 9 pages. https://doi.org/10.1145/1399504.1360664

Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2010. Efficient Yarn-Based

Cloth with Adaptive Contact Linearization. In ACM SIGGRAPH 2010 Papers (Los
Angeles, California) (SIGGRAPH ’10). Association for Computing Machinery, New

York, NY, USA, Article 105, 10 pages. https://doi.org/10.1145/1833349.1778842

Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry, and Eitan

Grinspun. 2014. Adaptive Nonlinearity for Collisions in Complex Rod Assemblies.

ACM Trans. Graph. 33, 4, Article 123 (July 2014), 12 pages. https://doi.org/10.1145/

2601097.2601100

Theodore Kim. 2020. A Finite Element Formulation of Baraff-Witkin Cloth. Computer
Graphics Forum 39, 8 (2020), 171–179. https://doi.org/10.1111/cgf.14111

Theodore Kim, Fernando De Goes, and Hayley Iben. 2019. Anisotropic Elasticity for

Inversion-Safety and Element Rehabilitation. ACM Trans. Graph. 38, 4, Article 69
(July 2019), 15 pages. https://doi.org/10.1145/3306346.3323014

Konstantin Klenin and Jörg Langowski. 2000. Computation of writhe in modeling of

supercoiled DNA. Biopolymers: Original Research on Biomolecules 54, 5 (2000), 307–
317. https://doi.org/10.1002/1097-0282(20001015)54:5<307::AID-BIP20>3.0.CO;2-Y

Brad A. Krajina, Audrey Zhu, Sarah C. Heilshorn, and Andrew J. Spakowitz. 2018.

Active DNA Olympic Hydrogels Driven by Topoisomerase Activity. Phys. Rev. Lett.
121 (Oct 2018), 148001. Issue 14. https://doi.org/10.1103/PhysRevLett.121.148001

Jonathan Leaf, Rundong Wu, Eston Schweickart, Doug L. James, and Steve Marschner.

2018. Interactive Design of Periodic Yarn-Level Cloth Patterns. ACM Trans. Graph.
37, 6, Article 202 (Dec. 2018), 15 pages. https://doi.org/10.1145/3272127.3275105

Hammad Mazhar, Tim Osswald, and Dan Negrut. 2016. On the use of computational

multi-body dynamics analysis in SLS-based 3D printing. Additive Manufacturing
12 (2016), 291–295. https://doi.org/10.1016/j.addma.2016.05.012 Special Issue on

Modeling & Simulation for Additive Manufacturing.

Charles A. Micchelli and Hartmut Prautzsch. 1989. Uniform refinement of curves. Linear
Algebra Appl. 114–115 (1989), 841–870. https://doi.org/10.1016/0024-3795(89)90495-

3

John Milnor. 1954. Link groups. Annals of Mathematics (1954), 177–195.
Edward L. F. Moore. 2006. Computational topology of spline curves for geometric and

molecular approximations. Ph.D. Dissertation. University of Connecticut. Advisor(s)

Peters, Thomas J.

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

https://doi.org/10.1145/280814.280821
https://doi.org/10.1145/882262.882357
https://doi.org/10.1007/978-3-642-00837-5_2
https://doi.org/10.1007/978-3-642-00837-5_2
https://doi.org/10.1145/1778765.1778853
https://doi.org/10.1145/2461912.2462027
https://doi.org/10.1145/566570.566623
https://doi.org/10.1145/2185520.2185592
https://doc.cgal.org/5.2.1/Manual/packages.html#PkgKernel23
https://doi.org/10.1016/B978-0-12-384988-5.00006-1
https://doi.org/10.1016/B978-0-12-384988-5.00006-1
https://doi.org/10.1006/jcph.1999.6355
https://doi.org/10.1021/ct200657e
https://doi.org/10.1021/ct200657e
https://web.cse.ohio-state.edu/~dey.8/handle/ReebHanTun-download/reebhantun.html
https://web.cse.ohio-state.edu/~dey.8/handle/ReebHanTun-download/reebhantun.html
https://doi.org/10.1016/j.cad.2009.01.001
https://doi.org/10.1016/j.cad.2009.01.001
https://doi.org/10.1016/S0097-8493(96)00067-2
https://doi.org/10.1016/S0097-8493(96)00067-2
https://doi.org/10.1016/0021-9991(87)90140-9
https://arxiv.org/abs/1505.07589
http://arxiv.org/abs/1505.07589
https://doi.org/10.1145/513400.513405
https://doi.org/10.1145/3424630.3425409
https://doi.org/10.1145/2070781.2024171
https://doi.org/10.1145/2070781.2024171
https://doi.org/10.1111/j.1467-8659.2009.01369.x
https://doi.org/10.1111/j.1467-8659.2009.01369.x
https://doi.org/10.1109/IROS.2010.5652787
https://doi.org/10.1109/IROS.2010.5652787
https://doi.org/10.1145/3306346.3322973
https://doi.org/10.1145/1028523.1028541
https://doi.org/10.1145/1028523.1028541
https://doi.org/10.1145/2461912.2461916
https://doi.org/10.1145/1399504.1360664
https://doi.org/10.1145/1833349.1778842
https://doi.org/10.1145/2601097.2601100
https://doi.org/10.1145/2601097.2601100
https://doi.org/10.1111/cgf.14111
https://doi.org/10.1145/3306346.3323014
https://doi.org/10.1002/1097-0282(20001015)54:5<307::AID-BIP20>3.0.CO;2-Y
https://doi.org/10.1103/PhysRevLett.121.148001
https://doi.org/10.1145/3272127.3275105
https://doi.org/10.1016/j.addma.2016.05.012
https://doi.org/10.1016/0024-3795(89)90495-3
https://doi.org/10.1016/0024-3795(89)90495-3

Fast Linking Numbers for Topology Verification of Loopy Structures • 106:17

Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James Mccann.

2018. Automatic Machine Knitting of 3D Meshes. ACM Trans. Graph. 37, 3, Article
35 (Aug. 2018), 15 pages. https://doi.org/10.1145/3186265

Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann. 2019. Visual Knitting

Machine Programming. ACM Trans. Graph. 38, 4, Article 63 (July 2019), 13 pages.

https://doi.org/10.1145/3306346.3322995

Florian T. Pokorny, Johannes A. Stork, and Danica Kragic. 2013. Grasping objects with

holes: A topological approach. In 2013 IEEE International Conference on Robotics and
Automation. 1100–1107. https://doi.org/10.1109/ICRA.2013.6630710

Dale Rolfsen. 1976. Knots and links. Publish or Perish, Berkeley, CA.

David Salesin, Jorge Stolfi, and Leonidas Guibas. 1989. Epsilon Geometry: Building

Robust Algorithms from Imprecise Computations. In Proceedings of the Fifth Annual
Symposium on Computational Geometry (Saarbruchen, West Germany) (SCG ’89).
Association for Computing Machinery, New York, NY, USA, 208—-217. https:

//doi.org/10.1145/73833.73857

Andrew Selle, Michael Lentine, and Ronald Fedkiw. 2008. A Mass Spring Model for

Hair Simulation. ACM Trans. Graph. 27, 3 (Aug. 2008), 1–11. https://doi.org/10.

1145/1360612.1360663

Jonathan Richard Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and

Fast Robust Geometric Predicates. Discrete & Computational Geometry 18, 3 (Oct.

1997), 305–363.

Zachary Sierzega, Jeff Wereszczynski, and Chris Prior. 2020. WASP: A software pack-

age for correctly characterizing the topological development of ribbon structures.

bioRxiv (2020). https://doi.org/10.1101/2020.09.17.301309

Jonas Spillmann and Matthias Teschner. 2008. An Adaptive Contact Model for the

Robust Simulation of Knots. Computer Graphics Forum 27, 2 (2008), 497–506. https:

//doi.org/10.1111/j.1467-8659.2008.01147.x

Alessandro Tasora, Radu Serban, Hammad Mazhar, Arman Pazouki, Daniel Melanz,

Jonathan Fleischmann, Michael Taylor, Hiroyuki Sugiyama, and Dan Negrut. 2016.

Chrono: An Open Source Multi-physics Dynamics Engine. In High Performance
Computing in Science and Engineering, Tomáš Kozubek, Radim Blaheta, Jakub Šístek,

Miroslav Rozložník, and Martin Čermák (Eds.). Springer International Publishing,

Cham, 19–49.

Adriaan Van Oosterom and Jan Strackee. 1983. The Solid Angle of a Plane Triangle.

IEEE Transactions on Biomedical Engineering BME-30, 2 (1983), 125–126. https:

//doi.org/10.1109/TBME.1983.325207

Pascal Volino and Nadia Magnenat-Thalmann. 2006. Resolving Surface Collisions

through Intersection Contour Minimization. InACM SIGGRAPH 2006 Papers (Boston,
Massachusetts) (SIGGRAPH ’06). Association for Computing Machinery, New York,

NY, USA, 1154–1159. https://doi.org/10.1145/1179352.1142007

MonanWang and Jiaqi Cao. 2021. A review of collision detection for deformable objects.

Computer Animation and Virtual Worlds (2021).
Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel. 2018.

Stitch Meshing. ACM Trans. Graph. 37, 4, Article 130 (July 2018), 14 pages. https:

//doi.org/10.1145/3197517.3201360

Kui Wu, Hannah Swan, and Cem Yuksel. 2019. Knittable Stitch Meshes. ACM Trans.
Graph. 38, 1, Article 10 (Jan. 2019), 13 pages. https://doi.org/10.1145/3292481

Kui Wu and Cem Yuksel. 2017. Real-time Fiber-level Cloth Rendering. In ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games (I3D 2017) (San Francisco,

CA). ACM, New York, NY, USA, 8. https://doi.org/10.1145/3023368.3023372

Rundong Wu, Joy Xiaoji Zhang, Jonathan Leaf, Xinru Hua, Ante Qu, Claire Harvey,

Emily Holtzman, Joy Ko, Brooks Hagan, Doug James, François Guimbretière, and

Steve Marschner. 2020. Weavecraft: An Interactive Design and Simulation Tool for

3D Weaving. ACM Trans. Graph. 39, 6, Article 210 (Nov. 2020), 16 pages. https:

//doi.org/10.1145/3414685.3417865

Christopher Yu, Henrik Schumacher, and Keenan Crane. 2020. Repulsive Curves. ACM
Trans. Graph. (2020). Conditionally accepted preprint.

Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch

Meshes for Modeling Knitted Clothing with Yarn-Level Detail. ACM Trans. Graph.
31, 4, Article 37 (July 2012), 12 pages. https://doi.org/10.1145/2185520.2185533

Dmitry Zarubin, Vladimir Ivan, Marc Toussaint, Taku Komura, and Sethu Vijayakumar.

2012. Hierarchical Motion Planning in Topological Representations. In Proceedings
of Robotics: Science and Systems. Sydney, Australia. https://doi.org/10.15607/RSS.

2012.VIII.059

Liangjun Zhang, Young J. Kim, Gokul Varadhan, andDineshManocha. 2007. Generalized

penetration depth computation. Computer-Aided Design 39, 8 (2007), 625 – 638.

https://doi.org/10.1016/j.cad.2007.05.012 Solid and Physical Modeling 2006.

Changxi Zheng and Doug L. James. 2012. Energy-Based Self-Collision Culling for

Arbitrary Mesh Deformations. ACM Trans. Graph. 31, 4, Article 98 (July 2012),

12 pages. https://doi.org/10.1145/2185520.2185594

A DISCRETIZATION PROOFS
These proofs accompany the Discretization discussion in §3.3.1.

Theorem A.1. If all input loops have only polynomial spline seg-
ments, and no two loops intersect, then Algorithm 3 terminates in finite
time if it uses tight AABBs as the bounding volumes in its overlap
check.

Proof. Write each input spline segment using a parameter 𝑡

that has a domain of (0, 1). Since there is a finite number of input

spline segments and each segment is polynomial over 𝑡 with a finite

domain, the derivative along the curve with respect to 𝑡 has a global

maximum,𝑀 . Since the loops don’t intersect, let 𝑑 be the minimum

separation between two loops. After pass 𝑃 of the algorithm, the

parameter 𝑡 of any “under-refined” spline segment now spans a

domain of length 2
−𝑃

. Because polynomial spline segments are

continuous, their arc lengths must be at most 2
−𝑃𝑀 . Their bounding

AABBs must therefore have diameters that are also at most 2
−𝑃𝑀 . If

the minimum separation between any two loops is 𝑑 , then after 𝑃 >

log
2
(2𝑀/𝑑) passes, no two bounding boxes of different loops can

overlap, and so all splines segments must have been discretized. □

Theorem A.2. If Algorithm 3 terminates, then it produces a line
segment discretization that is homotopically equivalent to the input
loops.

Proof. We can deform the input following the steps of the algo-

rithm. At each pass, let us deform one loop, 𝜉 , at a time. All the spline

segments of this loop, 𝜉 , that are “processed” during the pass can be

deformed continuously to their line segments (which share the same

endpoints) by parameterizing the line segment to have the same 𝑡

domain and performing a point-wise straight-line deformation at

each 𝑡 . Because our bounding boxes are convex, this deformation

sweeps a surface that is entirely within the bounding box. The box

overlaps with no boxes from other loops, so loop 𝜉 does not cross

any other loop during the deformation. Notice, however, that we

do not guarantee that a loop does not cross itself during its defor-

mation; this is allowed in link homotopy and does not affect the

linking number. After all the passes, every loop has been deformed

into its output polyline, and we are done. □

B IMPLEMENTATION DETAILS OF LINKING NUMBER
COMPUTATION ROUTINES

B.1 Direct Summation
We reproduce the direct sum expression (4) here for reference. For

loops 𝛾1, 𝛾2, consisting of 𝑁𝑙 , 𝑁𝑘 line segments respectively, with

𝑗, 𝑖 enumerating the segments respectively, we want to compute

𝜆(𝛾1, 𝛾2) =
𝑁𝑘∑
𝑖

𝑁𝑙∑
𝑗

𝜆 𝑗𝑖 . (16)

𝜆 𝑗𝑖 =
1

2𝜋

(
atan

(
a · (b × c)

|a| |b| |c| + (a · b) |c| + (c · a) |b| + (b · c) |a|

)
+ atan

(
c · (d × a)

|c| |d| |a| + (c · d) |a| + (a · c) |d| + (d · a) |c|

))
.

(17)

In our implementation, both on the CPU and for large examples

on the GPU, we multithread the outer loop of 𝑖 , and perform angle

summations (using the arctan addition formula) in the inner loop

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

https://doi.org/10.1145/3186265
https://doi.org/10.1145/3306346.3322995
https://doi.org/10.1109/ICRA.2013.6630710
https://doi.org/10.1145/73833.73857
https://doi.org/10.1145/73833.73857
https://doi.org/10.1145/1360612.1360663
https://doi.org/10.1145/1360612.1360663
https://doi.org/10.1101/2020.09.17.301309
https://doi.org/10.1111/j.1467-8659.2008.01147.x
https://doi.org/10.1111/j.1467-8659.2008.01147.x
https://doi.org/10.1109/TBME.1983.325207
https://doi.org/10.1109/TBME.1983.325207
https://doi.org/10.1145/1179352.1142007
https://doi.org/10.1145/3197517.3201360
https://doi.org/10.1145/3197517.3201360
https://doi.org/10.1145/3292481
https://doi.org/10.1145/3023368.3023372
https://doi.org/10.1145/3414685.3417865
https://doi.org/10.1145/3414685.3417865
https://doi.org/10.1145/2185520.2185533
https://doi.org/10.15607/RSS.2012.VIII.059
https://doi.org/10.15607/RSS.2012.VIII.059
https://doi.org/10.1016/j.cad.2007.05.012
https://doi.org/10.1145/2185520.2185594

106:18 • AnteQu and Doug L. James

with a single arctangent at the end of each loop, and perform a

sum reduction on the total. This results in 𝑁𝑘 arctangents. When

performing the inner loop, we split the 𝑗 loop into batches, and

each threadblock fetches the entire l𝑗 batch in parallel into shared

memory before each 𝑖 thread iterates through the batch. See Alg.

7 for more details. To maximize GPU usage, for small examples

(𝑁𝑙𝑁𝑘 < 1.4 × 106), we parallelize both for-loops, and within each

iteration we perform one arctangent.

ALGORITHM 7: ComputeLink: Direct Summation via Angle Sum-

mation, CPU or Large Input on the GPU

Input : {l𝑗 }, {k𝑖 }, the two polyline loops

Output :𝜆, the linking number

// This function computes the linking number between two closed

polylines based on [Bertolazzi et al. 2019]. The function 𝑠 (𝑥, 𝑦)
outputs +1 if ((𝑦 > 0) or (𝑦 = 0 and 𝑥 < 0)), −1 otherwise.

Function ComputeLinkDS({l𝑗 }, {k𝑖 }):
𝜆 ← 0;

𝑁𝑙 ← |{l𝑗 } |; 𝑁𝑘 ← |{k𝑖 } |;
parallel for 𝑖 ∈ [0, 𝑁𝑘 − 1] do

𝑥𝑆 ← 1; 𝑦𝑆 ← 0 ;

𝑆 ← −1; 𝜆𝑖 ← 0 ;

// If this is the GPU, preload a batch of l𝑗 values here into
shared memory, and then add a threadfence.

for 𝑗 ∈ [0, 𝑁𝑙 − 1] do
a← l𝑗 − k𝑖 ;
b← l𝑗 − k𝑖+1;
c← l𝑗+1 − k𝑖+1 ;
d← l𝑗+1 − k𝑖 ;
𝑝 ← a · (b × c) ;
𝑑1 ← |a | |b | |c | + a · b |c | + b · c |a | + c · a |b | ;
𝑑2 ← |a | |d | |c | + a · d |c | + d · c |a | + c · a |d | ;
𝑥′ ← 𝑑1𝑑2 − 𝑝2 ;
𝑦′ ← 𝑝 (𝑑1 + 𝑑2) ;
if ((𝑠 (𝑑1, 𝑝)𝑠 (𝑑2, 𝑝) > 0) and (𝑠 (𝑑1, 𝑝)𝑠 (𝑥′, 𝑦′) < 0))

then
𝜆𝑖 ← 𝜆𝑖 + 𝑠 (𝑑1, 𝑝) ;

end
𝑥′′ ← 𝑥𝑆𝑥

′ − 𝑦𝑆𝑦′;
𝑦′′ ← 𝑥𝑆𝑦

′ + 𝑦𝑆𝑥′;
if ((𝑠 (𝑥′, 𝑦′) 𝑆 > 0) and (𝑠 (𝑥′′, 𝑦′′) 𝑆 < 0)) then

𝜆𝑖 ← 𝜆𝑖 + 𝑆 ;
end
𝑆 ← 𝑠 (𝑥′′, 𝑦′′) ;
𝑥𝑆 ← 𝑥′′/max(|𝑥′′ |, |𝑦′′ |) ;
𝑦𝑆 ← 𝑦′′/max(|𝑥′′ |, |𝑦′′ |) ;

end
𝜆𝑖 ← 𝜆𝑖 + atan2(𝑦𝑆 , 𝑥𝑆)/(2𝜋) ;
𝜆 ← 𝜆 + 𝜆𝑖 ; // Reduce this summation.

end
return 𝜆;

B.2 Barnes–Hut: Derivatives of 𝐺 (r̃1, r̃2), Moment
Computation, and Parallel Implementation

For reference, here is the Barnes–Hut far-field expansion (Eq. (10))

again, expanded about (r̃1, r̃2):

𝜆 = −
∫

d𝑠 d𝑡 (r′
1
× r′

2
) · ∇𝐺 (r1, r2) .

𝜆 = −
∫

d𝑠 d𝑡

[
(r′
1
× r′

2
) · ∇𝐺 (r̃1, r̃2)

+ ((r′
1
× r′

2
) ⊗ (−(r1 − r̃1) + (r2 − r̃2))) · ∇2𝐺 (r̃1, r̃2)

+ 1

2

((r′
1
× r′

2
) ⊗ (−(r1 − r̃1) + (r2 − r̃2)) ⊗ (−(r1 − r̃1) + (r2 − r̃2)))

· ∇3𝐺 (r̃1, r̃2) +𝑂 (|r̃1 − r̃2 |−5)
]
.

Now here are the derivatives of 𝐺 (r̃1, r̃2). Let r = r̃2 − r̃1. Then

∇𝐺 (r̃1, r̃2) =
r

4𝜋 |r|3
. (18)

∇
2𝐺 (r̃1, r̃2) =

𝐼3×3 |r|2 − 3r ⊗ r
4𝜋 |r|5

. (19)

∇
3𝐺 (r̃1, r̃2) =

−3∑𝑖 (r ⊗ e𝑖 ⊗ e𝑖 + e𝑖 ⊗ r ⊗ e𝑖 + e𝑖 ⊗ e𝑖 ⊗ r)
4𝜋 |r|5

+ 15r ⊗ r ⊗ r
4𝜋 |r|7

, (20)

where e𝑖 is the 𝑖-th basis element and repeated indices are summed.

Note that these are identical to the basis functions in Appendix A of

[Barill et al. 2018], except the third derivative there (Eq. 24 in [Barill

et al. 2018]) has a misprint.

These expressions can be expanded and rearranged so that for

each term, the 𝑠 and 𝑡 integrals can be separated; this allows us to

use the multipole moments directly.

Now let’s discuss how to build the moment tree. For reference,

here are the moments (from Eqs. (11), (12), and (13)) again:

c𝑀 =

∫
r′ d𝑠,

𝐶𝐷 =

∫
r′(r − r̃)𝑇 d𝑠,

𝐶𝑄 =

∫
r′ ⊗ (r − r̃) ⊗ (r − r̃) d𝑠 .

For a line-segment element, we set r̃ to the midpoint, and, evaluat-

ing the integrals over a line segment, we get that c𝑀 is the displace-

ment between the endpoints, 𝐶𝐷 = 0, and 𝐶𝑄 = 1

12
c𝑀 ⊗ c𝑀 ⊗ c𝑀 .

When we combine bounding boxes into their parents, we need

to sum and shift moments. Let r𝑐 be the displacement r̃𝑐 − r̃𝑝 (from

the parent node, indexed by 𝑝 , to the child node, 𝑐), and simply use

c𝑀𝑝 =
∑
𝑐

c𝑀𝑐 , (21)

𝐶𝐷𝑝 =
∑
𝑐

𝐶𝐷𝑐 + c𝑀𝑐r𝑇𝑐 , (22)

𝐶𝑄𝑝𝑖 𝑗𝑘 =
∑
𝑐

𝐶𝑄𝑐𝑖 𝑗𝑘 +𝐶𝐷𝑐𝑖 𝑗𝑟𝑐𝑘 +𝐶𝐷𝑐𝑖𝑘𝑟𝑐 𝑗 + 𝑐𝑀𝑐𝑖𝑟𝑐 𝑗𝑟𝑐𝑘 , (23)

to compute the parent moments (c𝑀𝑝 , 𝐶𝐷𝑝 , and 𝐶𝑄𝑝).

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

Fast Linking Numbers for Topology Verification of Loopy Structures • 106:19

On the CPU, we parallelized the two-tree method by gathering

the list of child node pairs to evaluate after each recursive pass,

and proceeding to children only after a pass is finished (breadth-

first). We first run breadth-first passes single-threaded until the

list has over 1000 node pairs. We then multithread the evaluation

with breadth-first passes when it has between 1000 and 500,000

node pairs to evaluate. Beyond the 500,000-node-pair upper limit,

memory allocation overhead (for the node-pair list) dominates, and

we simply call the depth-first recursive algorithm in parallel for the

500,000+ node pairs.

On the GPU, we use only a first-order far-field expansion, drop-

ping the quadrupole terms. Although we use the parallel, two-trees

algorithm on the CPU, we parallelize a one-tree algorithm when

evaluating on the GPU by basing it on the GPU Barnes–Hut N-Body

implementation from [Burtscher and Pingali 2011]. In particular, we

use Kernels 1 through 5. We first build a tree (Kernels 1 through 4)

for each loop, then for each loop pair, we evaluate Kernel 5 using the

source tree from one loop against target points from the other loop.

We modified Kernel 3 to gather and compute the monopole and

dipole moments of each node and also propagate the max segment

length, 𝑙𝑀 , from its children. Because segments are only inserted

at their midpoints, we replace the 𝛽 far-field condition in Alg. 6 by

checking whether |r1− tree.r| > 𝛽 (tree.𝑅 + tree.𝑙𝑀/2 + 𝑙1/2), where 𝑙1
is the length of the segment at r1. We modified Kernel 5 to evaluate a

first-order (dipole) far-field expansion when the 𝛽 far-field condition

is met by all threads; otherwise the arctan expression. However, one

key difference from [Burtscher and Pingali 2011] is that because the

source and target trees are different and our input is already spatially

coherent, Kernel 5 is actually slower if it evaluates the points in

the sorted order from Kernel 4 than if it evaluates the points in the

input order. So we keep Kernel 4 for sorting the individual source

trees, but we evaluate Kernel 5 on the target evaluation points in

the input order instead of the sorted order.

C FORMING VIRTUAL CLOSED LOOPS IN BRAIDS
This section describes the formation of virtual closed loops for

Open-Curve Verification §4.3.5. The key is that every curve in the

braid participates in two overlapping virtual closed loops, and every

virtual closed loop contains two curves from the braid. Then in the

Potential Link Search (PLS, §3.2), we exclude loop pairs that share a

common curve.

Let 𝛼1, · · · , 𝛼𝐿 denote the open curves, and let one rigid end be

the “left” end and the other be the “right” end. Furthermore, define

a small rigid end volume attached to each end, such that no curve

passes through it. Then follow this procedure, also illustrated in

Figure 14:

(1) To ease bookkeeping, parameterize the curves so that they

are oriented left to right.

(2) Form 𝐿 total closed loops, 𝛾𝑖 . For each 𝑖 ∈ [1, 𝐿 − 1], form 𝛾𝑖
from 𝛼𝑖 and 𝛼𝑖+1 by doing the following:

(a) Start with a copy of 𝛼𝑖 ,

(b) Append a virtual connection, entirely within the right end

volume, from the right end of 𝛼𝑖 to the right end of 𝛼𝑖+1,
carefully making sure it intersects no other virtual curve,

(c) Append 𝛼𝑖+1 in the reverse direction, and then

(d) Append a virtual connection, entirely within the left end

volume, from the left end of 𝛼𝑖+1 to the left end of 𝛼𝑖 , taking
the same care to ensure it intersects no other curve.

(3) Also form 𝛾𝐿 using 𝛼𝐿 and 𝛼1 the same way as the last step.

At this point, every curve 𝛼 should be part of two closed

loops 𝛾 , and every loop 𝛾 should contain two curves from the

model.

(4) Run our method from §3 using the input loops {𝛾𝑖 }, with the

difference that, at the end of the PLS stage, we exclude pairs

(𝑖, 𝑗) ∈ 𝑃 , where 𝛾𝑖 and 𝛾 𝑗 share an 𝛼 as a component (which

is when 𝑖 + 1 = 𝑗 or (𝑖 = 1 and 𝑗 = 𝐿)), from 𝑃 . The rest of the

method proceeds as usual, computing a sparse linking matrix

as a certificate.

(5) When this procedure is used again on a deformed model,

the virtual connections at each end must be appended with
the same exact paths, up to a rigid transformation (this is

possible because of the rigid ends), ensuring that the virtual

connections don’t pull through each other.

We also require that 𝐿 ≥ 4.

The certificate meaningfully verifies the topology between open

curves in the model, as long as no real curve enters the rigid end

volumes and the end volumes don’t mutually interpenetrate (ensur-

ing no real or virtual curve moves through a virtual connection). To

see how, suppose a single pull through occurs, between curves 𝛼𝑖
and 𝛼 𝑗 , 𝑖 < 𝑗 . Then this certificate must change, for these reasons:

• Call indices “cyclically adjacent” if they are either adjacent

(such as 𝑖 and 𝑖 + 1) or the first and last (such as 1 and 𝐿). If

(𝑖, 𝑗) are not cyclically adjacent, then the linkage between 𝛾𝑖
and 𝛾 𝑗 will be computed (because they don’t share a curve),

and found to be different, since the former contains 𝛼𝑖 , and

the latter contains 𝛼 𝑗 .

• Otherwise if (𝑖, 𝑗) are cyclically adjacent, then the linkage

between 𝛾𝑖−1 (modulo 𝐿) and 𝛾 𝑗 will be calculated (because

𝐿 ≥ 4, they don’t share a curve) and found to be different,

because the former contains 𝛼𝑖 , and the latter contains 𝛼 𝑗 .

Conversely, if a linking number changes, then there must have been

at least one topology violation among the real curves, because no

virtual connection participated in any pull through.

Furthermore, this procedure can be applied independently on

many interacting braids as long as each braid has at least 4 curves.

ACM Trans. Graph., Vol. 40, No. 4, Article 106. Publication date: August 2021.

	Abstract
	1 Introduction
	2 Background
	2.1 Computing the Linking Number
	2.2 Related Work

	3 Fast Linking Number Methods
	3.1 Method Overview
	3.2 Potential Link Search (PLS)
	3.3 Discretization
	3.4 Linking Number Computation

	4 Results and Analysis
	4.1 Experiments and Verification
	4.2 Performance
	4.3 Applications

	5 Conclusions
	5.1 Limitations and Future Work

	Acknowledgments
	References
	A Discretization Proofs
	B Implementation details of linking number computation routines
	B.1 Direct Summation
	B.2 Barnes–Hut: Derivatives of G(1, 2), Moment Computation, and Parallel Implementation

	C Forming virtual closed loops in braids

